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Abstract— Motion planning failures during autonomous nav-
igation often occur when safety constraints are either too
conservative, leading to deadlocks, or too liberal, resulting in
collisions. To improve robustness, a robot must dynamically
adapt its safety constraints to ensure it reaches its goal while
balancing safety and performance measures. To this end, we
propose a Soft Actor-Critic (SAC)-based policy for adapting
Control Barrier Function (CBF) constraint parameters at run-
time, ensuring safe yet non-conservative motion. The proposed
approach is designed for a general high-level motion planner,
low-level controller, and target system model, and is trained
in simulation only. Through extensive simulations and physical
experiments, we demonstrate that our framework effectively
adapts CBF constraints, enabling the robot to reach its final
goal without compromising safety.

I. INTRODUCTION

Autonomous mobile robots (AMRs) are becoming increas-
ingly prevalent in industries such as inspections, search and
rescue, and transportation. Despite their potential, safety
assurance remains a major hurdle to widespread adoption.
This challenge is highlighted by recent high-profile incidents,
including Waymo’s recall of self-driving vehicles due to
collisions caused by navigation failures [1]. This safety prob-
lem was also evidenced at the 2024 ICRA BARN challenge
[2], in which no team succeeded in navigating their robot
through a series of complex, cluttered environments without
collisions. These collisions are often attributed to failures in
both high-level path planning and low-level tracking control,
the former of which we investigated in our prior work [3].

Addressing this challenge at its root requires the low-
level controller to reason about surrounding obstacles and
generate safety-minded control inputs, regardless of the high-
level planner output. A promising approach for designing
such a safety-critical controller is Control Barrier Functions
(CBFs) [4], which act as a filter for the low-level controller
to ensure system safety. While there are existing applications
of CBFs to obstacle avoidance, [5], [6], the results are
typically limited to simulations only and rely on a fixed
parameter α which controls the desired level of conservatism
for the safety filter. However, the required conservatism
typically varies across an environment, necessitating runtime
adaptation of α.

For instance, consider the case in Fig. 1, where the robot
must navigate through a narrow, unknown environment. In
the top image, without any safety scheme, the robot crashes
because the low level controller fails to accurately track the
high level reference. If a fixed, overly conservative CBF
constraint is applied, the robot might become deadlocked
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Fig. 1. (Top) Traditional motion planning framework fails to avoid
obstacles when navigating a narrow corridor. (Bottom) Proposed framework
adapts CBF constraints in order to reach the final goal while ensuring safety.

at the entrance to the corridor (point C in Fig. 1). However,
by dynamically increasing the level of conservatism (lower
α) as it approaches the narrow passage, then relaxing the
constraint (higher α) once aligned (point D), the robot can
safely negotiate the opening and reach its goal xg . This
scenario is discussed further in Sec. VII.

To enhance the robustness of the motion planning
paradigm, we propose a data-driven framework that dynami-
cally adjusts α at runtime based on the robot’s state, desired
input, and sensed obstacle configuration. For this, we lever-
age the Soft Actor-Critic (SAC) algorithm [7], which uses an
entropy-based reward structure to learn a stable, stochastic
policy πθ. While real-world applications of Reinforcement
Learning (RL) are often restricted to simplified environments
like OpenAI Gym [8] for training, we develop a custom
pipeline which trains the SAC policy alongside the low-level
controller in a high-fidelity simulator and supports run-time
refinement in real-world deployments.

This paper presents two main contributions. 1) We propose
a real-world, open source1 CBF implementation with SAC-
based α adaptation for online safety constraint refinement,
designed to work with any low-level controller and motion
planning policy. By learning the relationship between α and
the robot’s state, desired control input, and sensed obsta-
cle configuration, the adaptation policy effectively balances
safety and progress toward the goal. 2) We develop a SAC

1https://github.com/UVA-BezzoRobotics-AMRLab/cbf_
tracking



training pipeline that operates outside the OpenAI Gym
framework, allowing the policy to train in high-fidelity simu-
lations and refine itself in real-world deployments. However,
we note that in our experimental trials, online adaptation was
not necessary to ensure system safety while navigating to the
goal.

II. RELATED WORK

While motion planning is an active field of research within
the robotics community, the challenge of achieving safe,
agile navigation in cluttered, unknown environments remains
a challenge [2]. CBFs [9], [10], grounded in Nagumo’s
theorem on set invariance [11], have emerged as a promising
approach to address safety for motion planning. In [5], a
CBF-based filter for navigating cluttered environments is
introduced, while [6] explores CBF formulations for source-
seeking tasks. However, these methods assume convex obsta-
cles and are validated in simulation only. [12] applies logistic
regression-based CBF constraints for obstacle clusters on
a physical platform. However, a common drawback across
these approaches is that traditional CBF formulations often
lead to overly conservative behavior, such as deadlocks.

To address conservatism, [13] expand the safe set of
control inputs by leveraging a deep differential network to
learn a residual term in the CBF. While promising, the ap-
proach remains limited to simulations, and the learned CBF
is a black box, offering no intuition for the learned safety
constraints. Rather than learning the CBF, [14] introduces
adaptive CBFs (aCBFs), which dynamically adjust the CBF
constraints to maintain safety. However, this method remains
conservative since it prevents the system from approaching
the boundary of the safe set. To address this [15] introduce
Robust aCBFs (RaCBFs), which relax the aCBF adaptation
laws and allow the system to approach the safe set boundary
without compromising safety. Along similar lines, and most
relevant to our work, [16] propose Rate-Tunable CBFs (RT-
CBFs), which update the CBF safety constraints online by
adapting the class-K function parameters. However, these
adaptive approaches have only been deployed in simulation,
and real world implementations are challenging due to their
reliance on auxiliary signals that require complex, unintuitive
design and computation steps [17].

In regards to robust trajectory tracking techniques, [18]
propose a Lyapunov-based trajectory controller that inte-
grates relaxed CBF constraints for obstacle avoidance. How-
ever, the approach still relies on a traditional, conservative
CBF formulation. Beyond CBF methods, [19] introduce a
robust tracking controller using Hamilton-Jacobi-Isaacs (HJI)
reachability analysis. Due to the high computational cost of
HJI, however, the approach relies on a low-fidelity planning
model, compromising tracking performance.

To our knowledge, the proposed approach is the first
application of the SAC algorithm to adapt CBF constraints at
runtime in a general motion planning pipeline, improving ro-
bustness across multiple robotic platforms in both simulation
and experiments without excessive conservatism.

III. CONTROL BARRIER FUNCTION PRELIMINARIES

Consider the following nonlinear, control-affine system:

ẋ = f(x) + g(x)u, (1)

where x ∈ X ⊂ Rn is the state, u ∈ Rm is the control
input, and f and g are locally Lipschitz, continuous functions
defining the system dynamics. To ensure safety, the system
state must remain within a designated “safe” set C ⊆ X . This
safe set C is defined as the superlevel set of a continuously
differentiable function h : X → R:

C = {x ∈ X : h (x) ≥ 0} (2)
∂C = {x ∈ X : h (x) = 0} (3)

Int (C) = {x ∈ X : h (x) > 0} (4)

where ∂C and Int (C) denote the boundary and interior of
C respectively. When defined in this way, the safety of the
system is guaranteed so long as the system state xt remains
within C for all t ≥ 0. To enforce this safety condition, C
must be forward invariant under the system dynamics in (1).
More formally, the set C is said to be forward invariant if,
∀x0 ∈ C, it holds that xt ∈ C for all t ≥ 0. In conjunction
with (2), it follows that if h(x) ≥ 0, then the system remains
within the safe set C, thereby ensuring safety.

In this work, we maintain the safety condition h(x) ≥ 0 by
leveraging the widely-used Zeroing Control Barrier Function
(ZCBF) [10]. By imposing the following ZCBF constraint,
the non-negativity of h(·) can be guaranteed:

sup
u∈U

[Lfh(x) + Lgh(x)u+ αe(h(x))] ≥ 0, (5)

for all x ∈ X , where αe(·) is an extended class-K function,
typically of the form αe(x) = αx, with α ∈ R being a
user-defined parameter controlling the admissible input set.
A larger α relaxes (5), allowing more aggressive control
but reduced safety conservatism. Conversely, a smaller α
restricts the control set, enforcing more cautious behavior.
This presents a challenge when tuning α, as it involves a
difficult trade-off between safety and control performance.

To address this, a common approach is to apply the ZCBF
constraint as a filter over the control inputs uΛ generated
by a general low-level controller Λ : Rn → Rm. This
safety filtering can be formulated as a ZCBF Quadratic
Program (ZCBF-QP) whose objective is to find an input u
that minimally adjusts uΛ to satisfy (5):

argmin
u

∥uΛ − u∥2

subject to Lfh(x) + Lgh(x)u+ αh(x) ≥ 0.
(6)

While this formulation offers a potential solution for
balancing safety and control performance, its effectiveness
still relies on precise tuning of α.

IV. PROBLEM FORMULATION

In this work we focus on developing a method to adapt
the ZCBF safety constraint in (5) to improve the safety of
a general low-level trajectory tracking controller Λ. Let (1)
define the equations of motion for a mobile robotic system
tasked to navigate an unknown environment. Traditionally,
a receding horizon motion planning policy Π is used to
generate a time parameterized trajectory r(t; t0) ∈ Rn on
the time interval [t0, tf ], where tf = t0 + Tr and Tr is the
time horizon of the trajectory. The purpose of this trajectory
is to provide a high-level path plan from the vehicle’s current



state x0
t to a goal xg while avoiding a state subset XO(t0)

of obstacles currently known to the vehicle.
While tracking r(·), information about obstacles are up-

dated such that, in general, XO(t) ̸= XO(t0). Consequently,
the path planner may fail to update the trajectory in response
to newly sensed obstacles due to infeasible constraints or
unmodeled disturbances. Additionally, since r(·) is typically
optimized for speed, it may cut too close to obstacles, leaving
little margin for error. As a result, even if r(·) is obstacle
free, collisions may still occur if the low-level controller
Λ cannot faithfully track the reference trajectory due to
model mismatches or input bounds. In all these cases, the
responsibility of safety assurance falls to Λ.

Problem 1 – Safe Tracking Control: Given a policy Π
that generates a reference trajectory r(t; t0) from the current
state x0

t to goal xg while avoiding the obstacle set XO(t0):

r(t; t0) = Π(x0
t ,xg,XO(t0)), (7)

the objective of the safe tracking control problem is to design
a general low-level controller Λ that generates an input signal
ut to track r(·) while ensuring system safety. The controller
Λ produces ut based on x0

t and r(·):

ut = Λ(x0
t , r(t; t0)). (8)

In this work, we focus on realizations of Λ that leverage
ZCBFs, using the constraint in (5) to keep the system
safe. However, tuning the α parameter poses a significant
challenge. A constant value can be overly conservative in one
region of the environment, causing deadlocks, while being
too aggressive in others, compromising safety. To address
this, α should be adapted dynamically based on the current
environment and vehicle state.

Problem 2 – Adaptive Safe Tracking Control: Given
a ZCBF-enabled low level controller Λ, we seek to find
an adaptation policy πθ(·|st) that adjusts α in real-time.
This policy should use a state embedding st, which includes
XO(t0), xt, and desired input ut, to ensure the vehicle safely
reaches xg while avoiding XO(t0).

In the following sections, we discuss in detail the design of
our SAC-based policy πθ for adaptation of the α parameter,
and validate our approach with extensive simulation and
experimental results.

V. APPROACH

We propose a SAC-based control barrier adaptation
scheme that dynamically adjusts the α parameter in (5),
enhancing safety for trajectory tracking in cluttered and un-
known environments without requiring manual, environment
specific-tuning. Fig. 2 outlines our approach. Data are col-
lected at each control time-step k during simulated naviga-
tion trials as state transitions ζk into a replay buffer D, which
is used to train the SAC-based α adaptation policy πθ(·|st)
given environmental embedding st (illustrated in Fig. 3(a)).
For navigation, a receding horiozn motion planning policy
Π produces a C2-continuous, time parameterized trajectory
r(t; t0) ∈ R2, which is tracked by a low-level controller Λ.
However, as shown in Fig. 3(b), relying solely on Π and Λ for
motion planning, without incorporating any safety scheme,
can result in collisions if the low-level controller is unable
to faithfully track r(·). While using a ZCBF filter with a

constant α can improve safety, selecting an appropriate α
remains challenging. A lower α risks deadlocks, while a
larger α, as in Fig. 3(c), may be too lenient, allowing the
vehicle to get closer to obstacles and require controls above
actuation limits to avoid collisions.

Fig. 2. Block diagram for SAC training and online deployment.

To address these limitations, we propose a ZCBF scheme
with a time-varying α(t) that filters the control inputs of Λ.
This allows (5) to dynamically adapt at each control cycle
through πθ, based on the current vehicle state x0

t , desired
input u0

t , and sensed obstacle configuration XO(t0). When
using this adaptation scheme, as shown in Figs. 3(d) and 3(e),
α(t) decreases when the vehicle approaches obstacles (points
A and C), increasing conservatism and pushing the vehicle
away. Conversely, α(t) increases when entering more open
spaces (point B) or when a low α(t) would prevent passing
through narrow openings (point D). In the following sections,
we describe our α adaptation framework in detail, starting
with the formulation of the ZCBF used in this work.

A. ZCBF Formulation

While the proposed SAC-based α adaptation framework
is designed for a general system ẋ, we focus on a second-
order unicycle model since it is applicable to a wide range
of mobile platforms. The system state x consists of SE(2)
pose [x, y, θ] ∈ X ⊂ R2 × [−π, π] and velocity v ∈ R, and
its dynamics are given by:

ẋ =


ẋ
ẏ

θ̇
v̇

 =

v cos(θ)v sin(θ)
0
0

+

0 0
0 0
0 1
1 0

[
a
ω

]
, (9)

where u = [a ω]
T is the input vector consisting of linear

acceleration a and angular velocity ω.
To ensure system safety, we define the safe set C as the set

of states where the distance do(x, y) between the vehicle’s
center (x, y) and nearest obstacle is larger than the vehicle’s
minimum circumscribing radius rv:

C = {x ∈ X | do(x, y)− rv > 0}. (10)

Using this definition of C, the ZCBF is formulated as
proposed in [6], [10]:

h(x) = [do(x, y)− rv] exp {∇do(x, y) · eθ − vd1}, (11)

where eθ = [cos θ sin θ] is the unit orientation vector of the
vehicle, d1 ∈ R+ is a user-defined parameter ensuring vd1 ∈
(0, 1), and ∇do(x, y) = [∂do

∂x
∂do

∂y ] is the spatial gradient of
do(x, y). In this work do(·) and ∇do(·) are computed using
a Euclidean Signed Distance Field (ESDF).



(a) (b) (c) (d) (e)
Fig. 3. (a) Illustration of SAC state st. (b) Base navigation pipeline crashing while tracking a generated trajectory r(·). (c) Using CBF safety filter with
α = .5 still results in a collision due to infeasible constraints. (d)-(e) Full approach navigating the environment while adapting α as needed.

B. Dynamic α Adjustment
While the ZCBF formulation introduced in the previous

section generally enhances safety as the vehicle navigates
towards its final goal xg , using a constant α poses two
challenges. First, tuning α to achieve safety while preventing
deadlocks is difficult due to the varying obstacle distribution
within an environment, (see Fig. 3(c)). Second, even if an
appropriate α is found, it won’t be suitable for all possible
environments. These challenges create an over-constrained
problem, making runtime adaptation of α necessary. To ad-
dress this, the α parameter in (5) can be adapted dynamically
within a user-defined interval α(t) ∈ [α−, α+] (detailed in
Sec. VI), allowing the safe set of inputs to expand or contract
as the vehicle navigates its environment.

To adapt α(t), we learn a policy at ∼ πθ(·|st), where the
input st ∈ RNs is an environmental state embedding and the
action at is the derivative α̇(t). The adaptation of α(t) can
then be governed via the following update equation:

α(t) = α(0) +

∫ t

0

α̇(τ) dτ, (12)

where α̇(τ) ∼ πθ(·|sτ ) and α(0) is a user-defined initial
value. In practice, we observed that α(t) can be updated
quickly enough that the choice of α(0) does not significantly
impact performance. Therefore, we set α(0) = α+ to avoid
conservatism from the outset. To implement πθ(·|st), we use
the Soft Actor-Critic (SAC) RL algorithm as it effectively
handles continuous action spaces and offers efficient sam-
pling during training. Additionally, its stochastic nature is
well-suited to handle the uncertainty and noise prevalent in
real-world robotic applications.

C. SAC for α Adaptation
The SAC is a state-of-the-art, off-policy algorithm for real-

world robotic reinforcement learning [7]. A key feature is its
objective function, which seeks a stochastic policy πθ that
maximizes expected return while also maximizing entropy:

Jπ = E
τ∼π

[ ∞∑
t=0

γt
(
R(st, at, st+1) + βH(πθ(·|st)

)]
,

(13)
where γ ∈ (0, 1] is a discount factor on future rewards
R(·), τ = (s0, a0, s1, a1, . . . ) is a sequence of states st and
actions at in the environment, H(P ) = Ex∼P [− logP (x)]
is the entropy term, and β is a fixed trade-off coefficient
that is automatically adjusted during training [7]. This dual
objective encourages a balance between exploration – incen-
tivizing the vehicle to explore new states – and exploitation
– maximizing the expected return. As a result, the objective
prevents πθ from converging to sub-optimal local minima,
while also improving sample efficiency and policy stability.

As the vehicle navigates through the environment, it adds a
collection of state transition tuples ζt = (st, at, rt, st+1, dt)
to a replay buffer D of maximum size Nd, where rt is the
transition reward and dt indicates whether st+1 is a terminal
state (i.e., collision or reach final goal). During training, the
SAC algorithm learns three deep neural networks: the (actor)
policy πθ along with two (critic) Q-functions Qϕ1

and Qϕ2
,

parameterized by θ, ϕ1, and ϕ2 respectively. To update θ and
ϕi, mini-batches are sampled from D to perform stochastic
gradient descent, minimizing the following loss functions:

L(θ,D) = E
st∼D
at∼πθ

[
− min

j=1,2
Qϕj (st, at) + β log πθ(at|st)

]
,

L(ϕi,D) = E
ζt∼D

[
(Qϕi

(st, at)− y(rt, st+1, dt))
2
]
. (14)

Here y(·) is the target for the critic functions and is
computed from the received reward and target value of the
next state-action pair, incorporating entropy regularization to
encourage exploration [7]. Using these loss functions, the
SAC framework refines the stochastic policy πθ(·|st), which
dynamically adjusts α as the vehicle progresses toward its
goal xg . However, the performance of the policy relies on
well-crafted state and reward design.

1) State and Reward Design: To ensure the SAC policy
adapts α while maintaining the feasibility of (5), the state
representation st must include all relevant system and en-
vironment variables necessary for computing h(·) in (11),
along with the value of h(·) itself. Additionally, we include
a term ρ to reward progress along the trajectory to xg .

To define ρ, we first determine t∗, the time associated with
the closest point along the trajectory r(·) to the vehicle’s
current xy-position (x0t , y

0
t ):

t∗ = arg min
t∈[t0,tf ]

∥∥∥∥r(t)− [
x0t
y0t

]∥∥∥∥ . (15)

The progress term ρ is then given by the ratio of t∗ to the
total trajectory duration Tr = tf − t0:

ρ =
t∗

Tr
. (16)

Thus, the full state vector st is defined below (see Fig. 3(a)
for illustration). For brevity, we omit the time-dependence:

s = [θ v a ω do(x, y) γd(x, y) ρ α h(x)]
T
, (17)

where γd(·) denotes the heading to the closest obstacle, and
is defined as γd(x, y) = atan2(∂do

∂y ,
∂do

∂x ).
With the state defined, the reward function R(st, at, st+1)

is constructed to prevent deadlocks and promote safety by
heavily penalizing violations of the ZCBF constraint in (5):

R(·) = µddo + µρρ− µrα̇
2 − µbb(α)− µhψ(h), (18)



where µd, µρ, µr, µb, µh ∈ R+ are weighting parameters for
each component of the reward function.

Breaking down the reward function: the do term encour-
ages the vehicle to maintain a safe distance away from
obstacles and imposes a large negative reward in the event of
a collision. While this term encourages the vehicle to avoid
obstacles, relying on it alone can lead to situations where the
vehicle receives positive rewards even if it becomes dead-
locked. To address this issue, the ρ term rewards progress
along the current trajectory r(t) towards the final goal.

To promote stable adaptation, the α̇ term penalizes exces-
sive changes to α. The function b(α) imposes a penalty when
α(t) falls outside the bounds [α−, α+], ensuring πθ learns
the appropriate limits. Finally, ψ(h) penalizes actions that
would violate (5), encouraging πθ to keep h(·) non-negative
and thereby keep the system safe.

2) SAC Training: For training, we deploy a navigation
stack with planning policy Π and low level controller Λ in
a set of simulation environments. Using the BARN dataset,
[20], we generate 40 cluttered Gazebo worlds for training,
requiring the vehicle to navigate each 5 times before moving
to the next. At each control cycle k during navigation, state
transition tuples ζk are recorded into an SQLite3 database,
serving as our replay buffer D. Upon reaching a terminal
state (i.e., collision or reached goal), the simulation ends
and πθ(·|st) is updated by uniformly sampling mini-batches
{ζi}Nd

i=1 ⊂ D to perform gradient descent on (14).
We have implemented the data collection and training

pipeline in this way to avoid the limitations of traditional
OpenAI Gym environments, which are often challenging
to apply in physical robot deployments. Our pipeline is
designed to function in both simulation for training and in
the real world for online refinement. In real-world scenarios,
instead of updating the policy after each navigation task,
periodic retraining can be performed asynchronously after a
number Nr of new transitions are added to D. Despite sup-
porting online policy refinement, our physical experiments
demonstrated that a pre-trained policy was sufficient for all
real-world trials conducted.

VI. SIMULATIONS

Simulations were performed to train the SAC policy,
πθ(·|st), and to validate the proposed approach. All simula-
tions ran in Gazebo on Ubuntu 20.04 using ROS Noetic. The
robot used was a Clearpath Robotics Jackal UGV equipped
with a 270◦ 2D LiDAR sensor. For training, data were
collected into a replay buffer D for updating the actor and
critic models πθ, Qϕ1

, Qϕ2
as described in Sec. V-C.2.

We evaluated the performance of our approach on two
different realizations of Λ: a Model Predictive Controller
(MPC) [21] and a Proportional-Derivative (PD) [22] con-
troller. For each, we tested three configurations: no ZCBF,
a constant α for the ZCBF constraint in (5), and our full
approach with SAC-based adaptation. The MPC, written
in C++ using the Sequential Least SQuares Programming
(SLSQP) [23] algorithm from NLOPT [24], was tested up to
15Hz, but ran at 10Hz with a prediction horizon of N = 15.
The ZCBF-QP for the PD controller, also implemented in
NLOPT, filters inputs in under 1ms, while the PD controller
itself ran at 10Hz. For testing, we ran 5 trials for each of

the 50 generated BARN testing worlds, including a baseline
Dynamic Window Approach (DWA) [25] for comparison.
We note that we did not compare against other CBF-based
methods in the literature, as their limiting assumptions make
real-world deployment challenging; instead, the constant α
case serves as a representative baseline for these approaches.

A. Case Study 1: Model Predictive Controller
In this case study, we implement our α adaptation frame-

work on top of a tracking MPC described [21] for the system
described in (9). The trajectory r(t; t0) = [xr(t) yr(t)]

T is
generated in a receding horizon fashion using an augmented
version of the FASTER solver [26], as detailed in our prior
work [3]. The cost function for the MPC is:

J =

N−1∑
k=1

[
∥∆xk∥2Q + ∥∆uk∥2P

]
+ ∥∆xN∥2M (19)

where ∆xk = xk − xr(k∆t) and ∆uk = uk − ur(k∆t)
are the state and input error with respect to r(·), and ∆t is
the sampling time. Q, P , and M are weighting matrices for
state, input, and final state respectively, xk is the kth state
in the predictive horizon, uk is the kth control input, and
ur(·) = [∥r̈(·)∥ ωr(·)] is the reference control input, where
ωr is the reference angular velocity, as calculated in [22].

To accurately track r(·), we augment (9) with two state
terms: lateral error ye(t) and heading error θe(t),

ye(t) = e⊥p (t)R(θr(t)), θe = θ(t)− θr(t). (20)

Here θr(t) = atan2 (ẏr(t), ẋr(t)), e⊥p (t) is the position error
normal and R(·) ∈ R2×2 is the rotation matrix. With the state
and objective defined, the final Optimal Control Problem
(OCP) incorporating the ZCBF constraint is formulated:

argmin
x,u

J(x,u, r)

subject to x0 = x0
t

xk+1 = f(xk) + g(xk)uk

Lfh(xk) + Lgh(xk)uk + αh(xk) ≥ 0

xk ∈ X , uk ∈ U

(21)

Incorporating the ZCBF within the OCP ensures proactive
safety over the prediction horizon as the system approaches
its goal xg . To reduce computation costs, α(t) is updated
at the start of each control cycle using (12) and assumed
constant over the horizon. Additionally, to keep α(t) from
growing unbounded, we constrain it to [.025, .5] based on
empirical results: α = .025 is overly conservative, while
α = .5 minimally alters the input while still enhancing safety.

As shown in Table I, using a constant α = .5 in the MPC
case improves the baseline MPC controller without the ZCBF
by 7%. However, this improvement is not as pronounced as
the 27% success rate improvement with our full SAC-based
approach. Fig. 4(e) illustrates the success rate differences
between our full approach and the constant α = .5 case,
highlighting only those worlds where a non-zero difference
was observed. Note that all of the differences are > 0,
demonstrating that our SAC-based approach consistently
performs as well or better than when α is fixed.

To illustrate how our SAC-based framework outperforms
the constant α = .5 approach, consider world 5 as depicted



TABLE I
SIMULATED TRIALS SUCCESS RATE COMPARISON

Baseline Success Rate
DWA 0.59

ZCBF Implementation MPC PD
No ZCBF 0.71 0.65

Constant α 0.78 0.68

SAC-based 0.98 0.72

(a) (b) (c) (d)

(e) (f)

Fig. 4. Simulation results for MPC. (a) Test world 5 in Gazebo. (b) Crash
with fixed α = .5. (c), (d) Success with the full approach. (e) Success
rate difference between full approach and α = .5. (f) α(t) plot for full
approach.

in Fig. 4(a), accompanied by an example of a navigation
failure in the constant α case (Fig. 4(b)) and success with
the proposed approach (Figs. 4(c) and 4(d)). In Fig. 4(b), the
reference trajectory r(·) leads the vehicle through a tightly
cluttered region. Although the vehicle can physically fit, the
narrow channel increases the likelihood of a crash. Here, the
α = .5 MPC identifies that the current reference state rc
is unsafe, and attempts to steer the vehicle away. However,
since the ZCBF is not sufficiently conservative, the vehicle
approaches the obstacles too closely, and is unable to avoid
a collision while turning away.

Conversely, using our SAC-based approach (Figs. 4(c)
and 4(d)), α(t) starts decreasing at point A as the vehicle
approaches the narrow entryway (Fig. 4(f)). This reduction
in α(t) prompts the vehicle to steer away from the narrow
corridor, as shown by the MPC horizon {xi} (point B). As
the vehicle continues through the left-side corridor, α(t) in-
creases, enabling the vehicle to progress towards xg without
the ZCBF constraint unduly obstructing its path (point C).

B. Case Study 2: PD Controller

In the second case study, a PD controller for the system
in (9) is implemented based on e⊥p , ye, and θe [22]. To
incorporate the ZCBF constraint, we feed the desired control
input uΛ = [a, ω] to the ZCBF-QP in (6). For the constant
α case, we use α = 4, which was found to be the highest
performing baseline. Following the same logic as with the
MPC, we restrict the bounds for α as [1.5, 8.0].

Table I shows that the SAC adaptation policy also im-
proves the performance of the baseline PD controllers, rein-
forcing that our approach is agnostic to the low-level con-

troller used. However, the improvement is less pronounced
compared to the MPC case (+7% improvement vs +27%).
We believe this is due to the myopic nature of the ZCBF-QP
and PD controller. While the MPC evaluates safety across the
entire predicted horizon {xi}, the ZCBF-QP only considers
safety in regards to the closest obstacle at the current time
step. This also aligns with the general observation that MPC
outperforms PD control due to its predictive and proactive
nature.

VII. PHYSICAL EXPERIMENTS

The proposed approach was validated on a Clearpath
Robotics Jackal and a Boston Dynamics SPOT quadruped,
using MPC for the low-level controller, as it performed
best in simulation. Since Spot can be approximated as a
unicycle model with slower translational and rotational speed
capabilities compared to the Jackal, the adaptation policy πθ
trained in simulation can be deployed on it.

Two test cases were setup for evaluation. In the first
(Fig. 5), the Jackal navigates a snake-like path and forest
environment toward a goal near the edge of the room. In the
second (Fig. 1), Spot negotiates an office environment where
the goal is within a narrow corridor. Without the full ap-
proach, the low-level controller attempts to track r(·) without
considering safety, leading to a collision. Both figures show
πθ adapting α(t) as the vehicles navigate towards their final
goals xg .

Fig. 5. (Left) Jackal navigating through a cluttered environment with the
full approach and (Top Right) crashing without CBF filter. (Bottom Right)
shows α adaptation using our full approach.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a novel SAC-based
adaptation scheme for the α parameter within the ZCBF
safety constraint, enhancing the robustness of low-level con-
trol by enforcing safety while preventing deadlocks. Our
approach has been exhaustively tested through simulation
and experimental case studies. Additionally, it can be used
with any low-level controller and system model with relative
degree 1 with respect to the ZCBF.

Future work will focus on detecting when the SAC policy
encounters novel scenarios as the vehicle navigates, refining
the policy in real-time through targeted simulations. We also
aim to incorporate dynamic obstacles into our approach.
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