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Abstract— Autonomous mobile robots (AMRs) equipped with
high-quality cameras are revolutionizing the field of au-
tonomous photography by delivering efficient and cost-effective
methods for capturing dynamic visual content. As AMRs are
deployed in increasingly diverse environments, the challenge
of consistently producing high-quality photographic content
remains. Traditional approaches often involve AMRs following
a predetermined path while capturing data-intensive imagery,
which can be suboptimal, especially in environments with lim-
ited connectivity or physical obstructions. These drawbacks ne-
cessitate intelligent decision-making to pinpoint optimal vantage
points for image capture. Inspired by Next Best View studies,
we propose a novel autonomous photography framework that
enhances image quality and minimizes the number of photos
needed. This framework incorporates a proposed evaluation
metric that leverages ray-tracing and Gaussian process inter-
polation, enabling the assessment of potential visual information
from the target in partially known environments. A derivative-
free optimization (DFO) method is then proposed to sample
candidate views and identify the optimal viewpoint. The effec-
tiveness of our approach is demonstrated by comparing it with
existing methods and further validated through simulations and
experiments with various vehicles.

Note—Code and videos of the simulations and experiments are
provided in the supplementary material and can be accessed
at https://www.bezzorobotics.com/sg-1b-icra25.

I. INTRODUCTION

Autonomous mobile robots (AMRSs) are becoming increas-
ingly prevalent in industries like manufacturing, healthcare,
logistics, real-estate, and entertainment. One of the most
notable applications in which AMRs play a key role is
robotic photography [1], [2] due to their ability to reach
view points that would otherwise be inaccessible or even
hazardous for humans, e.g., disaster sites, high-rise buildings,
or underwater structures [3] or simply to perform tasks more
quickly or strategically [4]. For example, Fig. 1 depicts a
UAV tasked to take the most comprehensive picture of a
house. As can be noted by the different viewpoint pictures,
some angles are better than others due to the presence of
obstacles that occlude the target object of interest. This
ability to assess and select the best viewpoint (i.e., D in the
figure) for capturing critical information is essential to the
success of robotic photography tasks, especially in dynamic
and cluttered environments.

Despite these advancements, one of the key challenges
in automating robotic photography is determining what con-
stitutes a “good” picture. The evaluation of photo quality
is inherently subjective, and even human observers often
disagree on what makes an image satisfactory [5], [6]. This
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Fig. 1. A UAV captures a photograph of a house. Angles A, B, and C
represent obstructed or limited views, while a bird’s-eye view (D) offers the
most comprehensive information with minimal obstruction and distortion.

subjectivity complicates the creation of a formal metric
for photo quality assessment. Additionally, current robotic
systems often collect large amounts of redundant or irrelevant
data, requiring extensive human post-processing to sort and
evaluate the captured images.

In this work, we identify two significant gaps in the
existing literature: i) the absence of a clear, formal defi-
nition of a high-quality picture in the context of robotic
photography, and ii) the lack of efficient data collection
frameworks that reduce unnecessary images and minimize
human involvement in post-processing. Addressing these
gaps is crucial to making autonomous photography more
practical and scalable in real-world operations. By develop-
ing better tools for assessing image quality and optimizing
data collection, robots will be able to complete tasks more
autonomously, reducing the need for human intervention and
increasing overall efficiency.

In our autonomous photography framework, we propose
an evaluation metric based on perspective distortion, the scale
of a target within the viewing frame, and the estimated target
coverage which will allow us to find the best viewpoint.
The metric is used in conjunction with a derivative-free
optimization (DFO) method which samples the environment
to find the best viewpoint. The main contribution of this work
is the development of an autonomous photography frame-
work that utilizes computationally efficient Gaussian process
interpolation and derivative-free optimization (DFO) to opti-
mize our proposed evaluation metric over uniformly sampled
candidate views. This framework enables the runtime capture
of high-quality and aesthetically pleasing images of the target
in a partially known environment.

II. RELATED WORK

This paper addresses a unique challenge in robotic photog-
raphy, distinct from autonomous inspection. Although both
fields aim to capture insightful images, autonomous inspec-
tion focuses on detailed visual documentation for precise
target reconstruction or digital replication. In contrast, the



photographic approach prioritizes obtaining an overall view
of the subject. Our methodology considers that some parts of
the target may be missed due to obstructions or occlusions,
situations that are less acceptable in inspection contexts
where every detail is crucial. Instead, the approach prioritizes
capturing the overall essence of the target, similar to human
photographers, aiming to gather as much information as
possible with few observations.

Next-Best-View (NBV) algorithms, first introduced by
Connolly in [7], focus on the exploration of objects or envi-
ronments by selecting the most informative next viewpoint
for a robot, optimizing this choice based on the robot’s
goals and constraints. NBV is especially important in 3D
object reconstruction, where determining the optimal next
viewpoint is crucial. In more recent studies, Naazare et al. [8]
proposed a weighted multi-objective optimization approach
to select NBVs for a mobile robotic arm, while Han et al.
[9] used a double-branch network architecture to rank NBVs.
Dhami et al. [10] extended these ideas by employing two
robotic arms for a more efficient reconstruction. However,
despite the success of these methods in acquiring dense data,
they tend to prioritize collecting information near the target
without fully addressing data redundancy or the appearance
of the target in the captured photograph.

Another challenge of directly applying NBV-based solu-
tions to autonomous photography is computing the optimal
viewpoint in partially known or unknown environments,
where unexpected objects can not only obscure the target
but also pose safety threats to vehicles. Authors in [11] nav-
igate robots to optimal viewpoints in known environments,
while the authors in [12] investigate a receding horizon
NBY, utilizing a random tree method to guide the robot
along a path in an unknown environment. [13] proposes
a guided NBV approach for large-scale 3D reconstruction,
which requires a rough global scan prior to a detailed NBV
inspection. [14] computes NBV based on the map built
during frontier exploration. In contrast, our work focuses
on applications where the target location is known but the
surrounding environment is unknown such as real-estate or
surveillance. Given the target location, the robot dynamically
updates the optimal viewpoint to efficiently adapt to changes
in the environment.

III. PROBLEM FORMULATION

For typical photography missions, target information is
known, but the surroundings can be uncertain. We assume the
robot knows the target’s location and dimensions T. Obsta-
cles, represented as an occupancy map M, can be known or
unknown O. The vehicle should update its viewpoint when
detecting obstacles that block the target. Equipped with range
sensors (LiDAR, sonar, cameras), the robot can recognize
obstacles and measure its distance to the target. The goal
is to maximize the information captured in the photo while
reducing the number of pictures needed during operations.
To achieve this, we formally define the problems as follows:

Problem 1. Metrics of the Best View for Capturing Target:
Consider the location and dimensions of the target repre-
sented by the coordinate set T and a set of initially unknown
obstacles that are discovered at runtime and represented by
an occupancy map M. The goal is to find an evaluation

metric G(T, M, P) that scores the sampled viewpoints P
for the vehicle to visit at runtime.

Problem 2. Max-Info Path Planning: Given a partially-
knownn environment and metrics for picture evaluation, gen-
erate a path that minimizes the time to the viewpoint while
ensuring the robot’s safety. The path planner should also
accommodate changes in the environment, as new obstacles
may appear as the vehicle approaches the best viewpoint.

IV. METHODOLOGY

The framework aims to autonomously capture the entire
target from as few viewpoints as possible. The camera
position ensures the target occupies a specific proportion
of the frame, minimizing distortion and obstructions. If the
target is not fully visible in one frame, the robot must
decide autonomously to focus on one part of the target and
subsequently move to capture the remainder of the target.
In this work, we propose an objective function that formally
defines the quality of a photograph and a method to capture
quality photographs of the entire target with as few pictures
as possible.

Fig. 2 describes a method for guiding an autonomous
mobile robot during a mission in a partially-known environ-
ment. Starting from a known point, the robot utilizes a depth
sensor to update its map and interest in unseen portions of
the target while generating candidate views. These views are
scored for quality, and particle swarm optimization (PSO) is
employed to determine the optimal camera position, though
any DFO method could be applied. The robot continuously
re-evaluates its viewpoint as it moves, updating its target
coverage using Gaussian process interpolation once the op-
timal point is reached and a photo is taken. Further details
on metrics and view evaluation follow.
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Fig. 2. Diagram of the proposed approach.
A. Photo Evaluation Metric

First, we introduce the metric to determine the ideal
position to capture an image of a desired target which
were chosen based on careful discussion with our research
sponsors in the real-estate industry. To aid the reader’s
comprehension, we begin with a visual illustration of the
metric using a two-dimensional example in Fig. 3 followed
by an example in Fig. 4 that showcases the expansion of
the 2D metrics to 3D. We consider a discretized target
T € R™*" where ny is the dimension of the target and
defined by m coordinates. In Fig. 3, a UAV is positioned
slightly behind an obstacle, obscuring its view of the full
target. For the visible portion of the target T,, C T and for
7 € T,, g(r,p) = 1 indicates that the visible portion has
not been captured previously and is visible from viewpoint



p, while g(, p) = 0 indicates that the region is obscured or
has already been observed in the past, making the interest in
that section low or unimportant to recapture. We define the
optimal viewpoint p* as follows:

p* =argmax G(T, M,p) (D
P

where G(T, M,p) =4 7s - Z g(7,p).
T7€T

The function g¢(7,p) signifies the level of interest that
remains for any portion of the target after viewing from
viewpoint p. As shown in Fig. 3, the visible portion of the
target is a function of the position p and the occupancy map
M. The variables 4 and ~; are discount factors associated
with utility functions U; and U; to assess the quality of a
viewpoint given its respective camera parameters, position,
and environmental obstructions. These factors are essential in
determining the robot’s choice of optimal viewpoints, as they
influence the amount of distortion that can be accepted in the
pictures and the amount of the target that should occupy the
image. The evaluation of these factors will be discussed in
more detail in the following sections.
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Fig. 4. Pictorial depiction of evaluation metric for a 3D space.

1) Perspective Distortion Discount Factor

Directly facing the target surface is often the ideal view
to maximize the amount of information in one photograph
and create a consistent view of the target [15]. In fields such
as product photography, architecture, or real estate where
precise measurements and representations are required, dis-
torted structure is less preferred. We introduce a perspective
distortion discount factor that penalizes views that cause a
distortion of the target. The target distortion in our approach
is formally defined as follows:

Ya = 1:[1 Ua <M qd> )
i=1 tir

where ¢;; and ¢;5 represent the maximum distances from
the optical center associated with the intersection of the
camera frame and the target. The variable ¢;1 is the length
of the target captured along dimension ¢. Uy represents the
user-defined utility function associated with the perspective
distortion, penalizing unbalanced target captures, and qq is

a vector of parameters for the user-defined function. For
example, in a 2D scenario if ¢1; = {15, the view of the
vehicle’s camera is perpendicular to the target, minimizing
perspective distortion and maximizing v4. If ¢17 >> {19
or /17 << /{12, the vehicle is positioned far to the left or
right of the target, respectively, maximizing the perspective
distortion and resulting in a small 4. By incorporating this
factor into the optimization process, the proposed method
can effectively balance the trade-off between the ideal view
and the available view, improving the photo quality.

2) Scale Discount Factor

In photography, the term scale refers to the relative size of
the target compared to other objects in the frame. A favorable
picture places the target in the foreground, occupying a
percentage [ of the frame. Proper scaling is crucial for
accurately representing the target. The scale discount factor
vs is used to encourage capturing images where the target
occupies the desired percentage of the frame, determined by
5. We use the following equation to calculate this factor:

ng—1 R S
rYS = H Us <(¢’Lmdx(pi ¢Zm]n)7ﬁaqs) (3)
i=1

where ¢; min and ¢@; max are the minimum and maximum
angles of the intersection between the target plane and center
of the frame along dimension ¢ and ®; is the field of view
of the camera along dimension 7. We denote Ug as the
user-defined utility function associated with the scale of the
target in the frame and q, as a vector of parameters for
the user-defined function. In (3) , if ¢;min = —P;/2 and
®imax = ®;/2, the target would occupy 100% of the frame
along dimension . The utility function Us(+) would score this
percentage based on how close it is to the desired percentage
8. Fig. 3 and Fig. 4 present a physical representation to
illustrate this concept.

B. Candidate View Evaluation

The quality of pictures taken at viewpoints is evaluated
based on the vehicle’s knowledge of the environment. The
vehicle updates the environment’s occupancy map M using
recursive Bayesian updates [16], which helps re-evaluate
viewpoints as it moves, as view quality can change with
new observations. To manage the complexity of determining
optimal views in cluttered environments, ray-casting is used
to assess viewpoint quality and reduce computational load.

Ray-casting, a classical technique in computer vision,
allows for discrete modeling of complex interactions and
quality estimations [17]. Following [18], we use ray-casting
and (1) to estimate the view quality. In our approach, a
geometric ray-sphere transformation is employed to effi-
ciently estimate interactions with obstacles and the target.
The set of coordinates terminating at the vehicle’s maximum
observation range dp,x is derived from a set of unit vectors
U, defined as:

Xs={p+dmxtt | @€ U} 4

We also define a radius ¢, to check each ray for intersections
with the discretized target space T or obstacle coordinates.
As shown in Fig. 5, we assess the intersection of a coordinate
of interest z (e.g., target or obstacle) with each ray from
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Fig. 5. Pictoral depiction of a ray-sphere intersection with coordinate z.
The intersection point hy,iy is used to update the coordinate xs.

the viewpoint in the set U. Using a geometric approach,
we project the line segment from the viewpoint p to the
coordinate along the vector @ for the coordinate xs. Algo-
rithm 1 overviews the ray-tracing procedure for a coordinate
z. Given that this algorithm can find intersections with target

Algorithm 1 Ray-casting algorithm

Require: x;; u; T
Ly, =0
: dterminal == ||ms - PH2
if d, > 0 then
Rcoset = P+ d, > Closest point along ray to z
dcemer = ||hclosest - Z| |2
if deener < ¢ then
dchord = C% - dgemer
H = hclosest =+ dchord

B A A N

10: hpin = argmin ||hs — pl|2
h,eH

11: intersect = | Rin — p”2

12: if dintersect < dterminal then

13: dlerminal = dintersect

14: s < hnin

15: if z € T then

16: ys <+ 1

17: return xs, yYs

coordinates and obstacles, each x, € X, is updated using
Algorithm 1, and whether each x, is associated with the
target is stored, denoted logically by ys € Y.

Subsequently, we can find the values in (2) and (3) that
intersect the target. ¢@; min and @; max represent the minimum
and maximum angles between the normal vector and the
vectors that intersect the target along the " dimension.
Similarly, ¢;; and ¢;5 are determined by the distance to the
intersection point along dimension i"". This approach allows
us to compute the score in (1) discretely, increasing the
computation speed for each candidate view.

C. Target Coverage Estimation using GP Interpolation

The exact coverage for any target in 2D or 3D space is a
binary indicator for all coordinates of whether a coordinate of
the target has been captured or not. However, this process can
be expensive for a vehicle with limited computing capability
for any sized target, especially considering that we would
need an infinite number of rays to exactly compute the
coverage. For this reason, we use sparse ray-casting and
Gaussian process interpolation, utilizing induction points
based on the target location.

Gaussian process interpolation is a probabilistic frame-
work for interpolation and provides a natural way to quantify
uncertainty for a static set of target points [19], [20]. Given
a finite and sparse number of sampling points from the
ray intersections, we use Gaussian process interpolation to

estimate the probability of a target coordinate x € X being
observed at non-sampled target points.
Consider an initial GP, as presented in [21]

F(X) ~ GP(u(X), k(X, X)) (5)
characterized by a mean and covariance function:
n(X) = E[f(X)] (6)

E(X,X') = E[(f(X) = p(X)(f(X) = (X)) (D)

where f(X) is functionally interpreted in this application as
whether a target coordinate € X has been captured by the
robot (i.e., a zero if the coordinate has not been observed
and a one if the coordinate has been captured before). For
interpolation of the target space, the widely used radial basis
function (RBF) kernel is employed to capture the spatial
relationship between two points and likewise interpolate their
value using the Gaussian process regression with the kernel
equation formulated as:

X—X/ 2
XX

E(X,X') = 0% exp (— |
! 207

where o, € [0,1] and o, € [0,1] are two hyperparameters.
In this work, we tuned the hyperparameters by minimizing
the negative log-likelihood of the training data. In this
application, the variable X € R™*"™4 is a set of m sampled
target coordinates from the ray-casting discussed in the
previous section. We can estimate the target coverage as the
difference between the prior target coverage p(X) and the
estimated target coverage using the posterior mean, p*(X),
from a new viewpoint p given the set of sample target points
X, € R¥*™d_ As such, the computational complexity of the
target coverage is significantly reduced by the new equation

GX,p) =7a- 7 »_(15(X) = p;(X)). 9
j=1
where the subscript on p denotes the element of the mean
value for coordinate j and we compute p* as

1

P (X) = k(X,Xy) [k(Xs,Xs) + 021 Y. (10)

The variable o, is a constant in this case representing sensor
noise and Y is the binary 1D matrix signifying if the
sample terminal ray-cast coordinates in X, were in range
of a target coordinate. With this belief update, we estimate
the probability of additional coverage of the target from a
candidate viewpoint p and (1) can be efficiently computed for
each candidate viewpoint p. Fig. 6 showcases the estimated
view coverage using ray tracing and GP in 2D. However,
computing every candidate view in the environment is in-
tractable at runtime, especially given that (1) may have a
non-linear or discontinuous solution space. To overcome this
limitation, we incorporate particle swarm optimization to
dynamically determine the optimal viewpoint in real-time.

D. Candidate View Particle Swarm Optimization

In our autonomous photography framework, a candidate
viewpoint is represented as a point in a /N-dimensional
solution space. A swarm of particles is used to represent
potential viewpoints. Each particle, p;(¢), is the coordinate of
the i candidate view at time ¢, and its velocity components
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Fig. 6. An example of GP interpolation for 2D target visibility. The color
bar (a) shows true target coverage and (b) shows GP interpolated coverage.
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Fig. 7. An example of using GP to estimate the visibility of the target
in 3D space. (a) shows the environment, (b) shows the estimated GP result
from the ray hits. (c) provides the ground truth visibility.

are represented as v;(t). The coverage G is calculated for
each viewpoint and the particles migrate toward the particle
with the highest evaluation score.

At each time ¢, the velocity of a particle is perturbed by
the weighted sum of its personal best view and global best
view, resulting in an updated velocity and position. To update
the particle, we use the following equations:

’Ui(t+1) :wvi(t) +’I“101(bi(t) —pi(t)) (11)
+ rac2(g(t) — pi(t))
pi(t+1) =pi(t) +vi(t +1) (12)

where b;(t) and g(t) are the global best position evaluated
by the particles and the global best position of all particles,
respectively. The acceleration coefficients ¢; and co are non-
negative constants, which weigh the influence of the personal
and global bests in the search process. The inertia weight
w balances the local and global exploration of the particles
in the search space [22]. To prevent divergence, w must
be between O and less than 1. Adjusting coefficients c;
and ¢, influences particles to explore around local optima
(when ¢; > c¢2) or global optima (when ¢y > c¢1). This can
be modified during the heuristic process for exploration or
exploitation. Variables r; and 75, random numbers between
0 and 1, perturb particles to encourage exploration.

Fig. 7 illustrates our 3D approach where the vehicle
detects an obstacle obstructing the target and propagates
particles using the updated occupancy map. As the vehicle
moves toward the best viewpoint, the particles iteratively
search for the optimal view. Upon reaching the best view-
point, the vehicle captures a photo and updates the observed
target areas, as shown in Fig. 7(b). The obstacle shifts the
optimal viewpoint, causing the right side to be marked as
unseen and targeted for capture in future iterations.

V. SIMULATIONS

To demonstrate the robustness of the proposed method,
we conducted extensive simulations using different vehicles
equipped with sensors of varying capabilities in diverse
environmental contexts. In these MATLAB simulations, the
vehicle operates in a partially-known environment defined
by operational boundaries, target position, and dimensions.
The vehicle is equipped with two primary sensor types: 1)
a depth sensor for obstacle detection (e.g., RGB-D camera,
Lidar, etc.), and 2) an optical camera.

In the 2D simulation, the vehicle operates in a
100mx 100m grid world with a resolution of Im and uses
hybrid A* for path planning. The objective is to capture the
four sides of a building measuring 30m x 15m. Various shapes
of unknown obstacles are placed in front of three sides of
the building. Both the depth sensor and the camera have a
field of view (FOV) of & = [-7, %], and the range of the
RGB-D sensor is 7,4, = 25m.

We set 8 = 0.8, and the utility functions are designed in
the style of logistic functions:

q2

1+ ets(z+qa)’ (13)

U(z,q) =q + a=[q, ., q
We chose logistic functions for their rapid decline, allowing
effective differentiation between preferred values and less
desirable ones. For the utility function Uy, which penalizes
as x approaches 1, we select q4 = [0.3,0.7,20,—0.75].
For U,, we construct a piecewise function with q, =
[0,1,—20,—0.5] for z € [0,8] and qs = [0,1,30,—1]
for x € (f,1]. These functions ensure the utility’s peak
aligns with the desired proportion 3, reducing distortion and
preventing view intersection with the frame edges [1].

We employ Particle Swarm Optimization (PSO) with
20 particles to find the optimal viewpoint. Fig. 8 shows
keyframes from the simulation and heatmaps display ex-
pected target coverage and image quality metrics from (1).
The L2 norm error between the globally optimal solution and
the PSO results is 0.8538 4+ 0.6816m, which is insignificant
considering the size of the target.
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Fig. 8. A 2D simulation from a top-down view, The first row displays 1)
quadrotor states, 2) exploration progress, and 3) inspected target portions.
The second row shows the ground truth information gain for all viewpoints.

In the 3D simulation (Fig. 9), a target measuring
10m X 1mx 10m is positioned inside a 30mx30mx40m area
that contains an obstacle in front. We adopt RRT* for path
planning due to its effectiveness in complex 3D spaces.
The aerial vehicle navigates to the optimal viewpoint while
avoiding obstacles. The 3D example evaluation is conducted
at a rate of 5.48ms per candidate viewpoint.

z plane x — z plane

e

Fig. 9. Heatmap showing the results of the equations in the x-y, x-z, and
y-z planes, sliced at the optimal locations (denoted by a black star). As
shown, the vehicle is at the optimal point and can see the whole target.

We note that this approach minimizes the number of pho-
tos needed and evaluates image quality using defined metrics.
Fig. 10 illustrates a comparison between our method and



a sampling-based frontier approach [23]. While the frontier
method captures 26 photos to cover the entire target, none
meet our quality criteria. In contrast, our approach captures
only 2 photos that capture the whole target maximizing the
evaluation metrics.
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Fig. 10. Comparison of the proposed approach (a) with the sampling-based
frontier approach (b).
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VI. EXPERIMENTS

To validate the effectiveness and versatility of our pro-
posed approach, extensive real and virtual experiments were
conducted with various autonomous vehicles. We performed
2D experiments on different robots in similar environmental
settings with and without the presence of obstacles. The
experiments were carried out indoors using a VICON motion
capture system to localize the robots. The robots used for
these experiments are: a ROSbot skid steering UGV equipped
with an RPLIDAR and a camera, and a DJI Tello UAV
operating in the x-y plane while maintaining a fixed altitude.
As in the simulation, we set 8 at 0.8.

First, to test the effectiveness of our approach, the Tello
was started from the corner of the room and tasked to inspect
an object in a free space. From the left to the right in Fig. 11,
we show: 1) the bird view of Tello taking a picture, 2) the
GP result shows the entire target is inspected, 3) the heatmap
shows the ground truth evaluation of all viewpoints (note the
UAV at the optimal position), and 4) the final result. Fig. 12
shows the result for a case with obstacles blocking the direct
view of the facade of a target. With our method, the UAV
captures two images from each side of the T-shaped obstacle
to fully cover the front surface, and only requires one angled
shot to inspect the entire side surface. Lastly, Fig. 13 shows
the results for a setting with a slash-shaped obstacle. The
ROSbot UGV locates the best vantage point at which the
obstacle appears as a thin line.

To further reinforce these results, we performed virtual
experiments using a simulated RotorS Firefly equipped with
a stereo camera. This experiment ran on the same hardware
in Sec. V in C++. The evaluation of each candidate viewpoint
occurs in 2.39ms. As Fig. 14 shows the results of an example
virtual experiment, the vehicle detects the tree in front of the
house using the stereo camera and stores the readings in an
OctoMap [24]. The vehicle uses PSO to locate the optimal
viewpoint. The picture in Fig. 14(b) shows the resulting
image from this viewpoint. For this experiment, we set 3 to
0.8 and use RRT* to route the vehicle around obstacles. The
Gazebo snapshot in Fig. 14(c) shows the planned trajectory
of the UAV. The Rviz snapshot in Fig. 14(d) shows the
resulting plan given the observed obstacles, where the red-
shaded region represents the target.

VII. DISCUSSION AND CONCLUSION

In this work, we have presented a novel framework for an
autonomous vehicle to take a quality image of a target in a

Fig. 11.  Without obstacles, the proposed approach enables the UAV to
capture the entire target from the optimal inspecting point.

Fig. 12. A 2D experiment is shown that is similar to the 2D simulation.
The heatmap shows that the quadrotor captures images from the most
advantageous perspectives. The photographs obtained are also displayed.

Fig. 13. An experiment inspecting an object with a slash-shape obstacle.
The ground vehicle preserves almost the entire target with minimal distor-
tion. The obstacle appears as a thin line.
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@ (®)
An example virtual experiment where a tree obstructs the view
of the target. (a) and (b) show the initial and final view. (c) and (d) show
the trajectory followed to the best viewpoint in the gazebo and rviz.

Fig. 14.

partially-known environment. The approach includes utility
functions to define the quality of a viewpoint as well as
a method to estimate the information gain of a viewpoint
at runtime. The extensive simulations and results of the
experiments show the validity, applicability, and generality
of the proposed method.

Moving forward, we are interested in the following objec-
tives: 1) incorporate our metrics into existing NBV planners
to optimally route to viewpoints; 2) extend the framework
to consider dynamic obstacles; 3) identify areas of interest
to inspect after the entire target has been viewed such as
structural inconsistencies and areas of concern; 4) implement
this approach with only a monocular camera, utilizing ma-
chine learning to recognize depth information of a target; 5)
modeling and testing of this framework with multiple robots.
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