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Abstract— Navigation through unknown, cluttered environ-
ments is a fundamental and challenging task for autonomous ve-
hicles as they must deal with a myriad of obstacle configurations
typically unknown a priori. Challenges arise because obstacles
of unknown shapes and dimensions can create occlusions
limiting sensor field of view and leading to uncertainty in motion
planning. In this paper we propose to leverage such occlusions
to quickly explore and cover unknown cluttered environments.
Specifically, this work presents a novel occlusion-aware frontier-
based approach that estimates gaps in point cloud data and
shadows in the field of view to generate waypoints to navigate.
Our scheme also proposes a breadcrumbing technique to save
states of interest during exploration that can be exploited in
future missions. For the latter aspect we focus primarily on the
generation of the minimum number of breadcrumbs that will
increase coverage and visibility of an explored environment.
Extensive simulations and experiment results on an unmanned
ground vehicle (UGV) are demonstrated to validate the pro-
posed technique, showing improvements over traditional state
of the art frontier-based exploration methods.

I. INTRODUCTION

Autonomous exploration and mapping of unknown, clut-
tered environments is one of the most active areas of research
in robotics with far reaching applications. Robots with these
capabilities can be leveraged in inspections [1], surveillance
[2], search and rescue [3], and even household applications
like robotic vacuum cleaning. A critical component in each
of these tasks is that maps of the environment are built either
before or during exploration in order to assist with path
planning and keep track of where the robot has been and
has yet to go.

In order to perform such exploration operations, the robot
is equipped with range and vision sensors like lidar, IR,
sonar, and RGBd cameras that create point cloud data to help
build maps of the environment and navigate around obstacles.
These sensors’ fields of view, however, are often occluded
by objects in the environment, reducing the robot’s visibility
and thus reducing the speed at which exploration occurs, in
many cases also limiting the complete coverage in complex
environments. For example, consider a vehicle deployed in
a dense, heavy forested area tasked to map the environment
for search and rescue purposes or to find an item of interest,
or deployed in a warehouse tasked to clean, or inspect and
survey the area. Occlusions created by different types of
obstacles surrounding the robot can create several unknowns
restricting the possible reachable regions. If the robot could
infer and extract information about the expected environment
around such occlusions, it could increase its performance, in
particular its ability to cover the environment. Current state-
of-the-art approaches rely on using known free space within
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Fig. 1. Pictorial representation of the problem covered in this work in which
traversable regions (blue spheres in the figure) are inferred from range sensor
readings (dashed red lines) around occlusions to create frontier waypoints
to be used by the robot during exploration of unknown environments

the map built at every step to generate waypoints, however,
and occlusions in cluttered environments greatly reduce the
number of candidate waypoints that can be generated. We
note here that such occlusions often hide accessible regions
that, if leveraged, can increase the throughput of the robot
during exploration tasks. This work builds around this idea,
that is, to design a method to reason about occlusions and
infer and extract useful information about expected hidden
traversable regions to generate waypoints that can lead to
faster map coverage updates. As an intuition, for example,
large jumps in data between any consecutive point cloud
data in a lidar measurement typically indicate the presence
of a traversable area like a corridor, as shown in Fig. 1.
Similar considerations can be made for shadowed regions
behind obstacles which can be assumed to be reachable by
the vehicle.

Finally we note that exploration can be leveraged beyond
just the purpose of building a map. As a robot explores an
unknown environment, it may discover and save states of
interest, for example regions of higher visibility, regions that
were difficult to navigate and thus should be avoided in the
future, or regions that contain some optimal properties. These
states of interest can be thought of as virtual breadcrumbs
that a robot drops as they get discovered, which robots in
future missions may leverage to help complete tasks like
search and rescue or inspections faster than they would be
able to without them.

With these motivations in mind, in this paper we propose
a novel exploration method for autonomous robots in which
frontier points are inferred and selected based on information
extracted from sensor data patterns around occlusions. The
three main cases considered at runtime are gaps in range
sensor data, shadows in the sensor field of view, and open
space frontier waypoints. By considering these cases we
demonstrate that a robot can cover a completely cluttered



environment faster than state of the art frontier-based explo-
ration methods. We also propose a breadcrumbing method
to facilitate exploitation of these explored environments.
Specifically in this work we focus on breadcrumbing to
increase visibility and propose a solution to solve the so
called watchman tour problem, where a shortest route is
found such that every point in the environment is visible
from at least one point along the route [4]. Our approach
solves this problem online by utilizing a greedy maximum
coverage algorithm based on the geometry of saved sensor
data at strategic positions during exploration.

The contribution of this work is two-fold: 1) Explo-
ration: a robust occlusion-based exploration path planner
that enables a robot to quickly map an unknown, cluttered
environment by leveraging occluded regions of space, and 2)
Exploitation: a maximization algorithm for the online gen-
eration of approximate watchman tours of an environment.

The remainder of this paper is organized as follows: in
Section II, we provide an overview of related work in both
exploration path planning and watchman tour generation.
In III we outline the mathematical notation used in this
work and formulate the problem of map coverage and
watchman tour generation. The proposed path planner and
tour generation frameworks are presented in Section IV and
V respectively and are tested with extensive simulations
and experiments in Sections VI and VII. Lastly, we draw
conclusions and discuss future work in Section VIII.

II. RELATED WORK

A large body of work is available on autonomous explo-
ration of unknown environments. Over the years, two popular
strategies have been developed: frontier-based and sampling-
based navigation.

The first approach utilizes the notion of frontiers, which
are intermediate regions between known and unknown spaces
in a map. At each map update, a detection algorithm is run
to detect new frontiers for use in the next planning step. In
the formative work of [5], frontiers are detected within an
occupancy grid map, and the closest is targeted as the next
waypoint for the vehicle. In contrast, [6] aims to maximize
velocity by selecting frontiers closest to the camera frustum.

In sampling based exploration frameworks, the goal is to
sample poses which could grow the known regions of a map.
A major benefit in using such sampling based approaches
is that they remove the need to perform expensive global
frontier detection algorithms at every map update and allow
any desired utility definition to be used for pose selection
[7]. [8] leverages the Next-Best-Views (NBV) model [9]
to sample views which aim to maximize a utility function
based on volumetric gain and time-of-flight for the vehicle.
The NBV waypoints are generated by growing a Rapidly-
exploring Random Tree (RRT) to sample positions and yaws
from the configuration space of the vehicle [10]. [11] and
[12] combine both sampling and frontier based approaches
to rapidly map an environment. Despite the success of
sampling-based techniques, they can still get stuck in lo-
cal minima (e.g., dead-ends). [13] provides a history-based
technique to mitigate these limitations.

Despite the accomplished work in exploration path plan-
ning, less progress has been made on occlusion-based naviga-
tion. [14] discusses optimal path planning when obstacles in

the environment are occluded by other closer or larger obsta-
cles. Similarly, [15] and [16] utilize occluded lidar regions to
generate gaps to assist in navigation through unknown, clut-
tered environments. Given that these approach only consider
static obstacles, [17] leverages an MPC-based approach for
safe navigation in cluttered environments in which dynamic
obstacles may be occluded by other obstacles. While these
works consider the occlusions within unknown environments,
they only focus on goal-to-goal settings and don’t attempt to
solve the problem of map coverage.

In this paper we also propose a breadcrumbing technique
for path planning as an environment is explored. Related
to this topic, we find a few works mostly centered on
increasing wireless connectivity. [18] uses wireless beacons
as breadcrumbs, allowing a UAV to localize itself during
navigation to goal locations within an environment. However,
the breadcrumbs must be placed manually by a human prior
to navigation. [19] deploys wireless communication nodes
autonomously in GPS denied underground environments
by leveraging convolutional neural networks to assist in
optimal placement for maximum coverage, allowing nearly
full network coverage with a minimal number of nodes.
While both of these works leverage breadcrumbs to assist in
navigation, they don’t use them for the purpose of speeding
up map coverage. Lastly, [2] uses their City-CNN approach
to find vantage points for area coverage, but their approach is
not easily transferable to vehicles with limited FOV sensors
and they don’t generate shortest paths to navigate between
vantage points.

III. PRELIMINARIES

A. Notation

In this paper we denote vectors with bold, italic letters
(e.g., x) and sets with upper case greek and calligraphic
letters (e.g, Ω and S). We use the indicator IS(b(s)) to denote
if there exists s ∈ S which satisfies the boolean condition
b. Given a set S denoting a region of space, we use |S|
to denote the area of S. A ∧ symbol on top of a variable
represents its estimated value (e.g. x̂). || · || represents the
Euclidean norm and the robot state is denoted by x = (pu, θ)
where pu = [x, y]′ ∈ R2 refers to the position. z denotes
the sampled point cloud distances and is indexed as zi. The
corresponding point to zi is referred to as pi ∈ R2. poly(z)
takes in point cloud data and returns the polygon defined by
those points. Lastly, abs(·) denotes the absolute value.

B. Problem Formulation

The research discussed in this work can be split into two
main problems:

Problem 1: Fast Map Coverage: Given an a priori un-
known cluttered environment W with N obstacles in which
a region M ⊆ W is traversable by a robot, the problem of
map coverage is a multi objective optimization problem to
find a policy which completely covers M while also trying
to minimize the time needed to cover and mapM. Formally,
let x denote the pose state of the robot (e.g., x = (x, y, θ),
the positions and angles for a ground vehicle configuration)
and M(t) be the map covered by the robot at time t. The fast
map coverage problem is then defined as finding the control



policy U(t) to minimize the total time T to cover the entire
space such that the following constraint is satisfied:∣∣∣∣∣W \

T⋃
t=t0

M(t)

∣∣∣∣∣ < ϵ

where ϵ is an arbitrarily small threshold and \ is the set-
minus operation. The total covered map after this operation
is MT =

⋃T
t=t0

M(t).
This problem is solved by considering a modified frontier-

based exploration method that reasons about consecutive
data in point cloud measurements, inferring environmental
properties behind occlusions.

Problem 2: Watchman Tours Generation: Finding a
shortest distance trajectory x∗0:T such that every point in M
is in line of sight is known as the watchman tour problem. Let
MT be the total map generated from time 0 to T after solving
Problem 1. The objective of the watchman tour problem is
to minimize the total travelled trajectory x∗0:T to cover MT .

We solve this problem by monitoring and recording the
robot’s state along with its corresponding sensor readings
during the exploration step in the previous problem.

IV. OCCLUSION-BASED EXPLORATION PATH PLANNER

In this section, we describe our proposed path planner
for fast exploration of unknown, cluttered environments.
The diagram in Fig. 2 summarizes the architecture of our
framework. We first take as input 2D point cloud sensor
readings z and generate waypoints which allow the robot
to cover the entire environment (i.e., there will be no more
reachable frontiers).

Fig. 2. Block diagram of proposed approach. The contributions of this
paper are within the orange box.

The waypoints can be broken down into three types based
on the three main situations a robot can encounter while
exploring an unknown environment: gap occlusions, shadow
occlusions, and frontiers. Gap occlusions are measured by
discontinuities in contiguous point cloud samples as depicted
in Fig. 3(a) while shadow occlusions are measured by the
occluded region behind an obstacle, shown in Fig. 3(b).
Lastly, frontiers are the points in open space which lie on
the border of explored space by the robot [5].

As these waypoints are constructed, they are saved and
evaluated based on criteria like the robot’s state and waypoint
position. In the following sections, we describe in detail each
component of our framework depicted in Fig. 2, starting with
occlusion detection.

A. Gap Occlusion Detection

The primary waypoint we consider in our approach is
the gap occlusion, which encourages the robot to consider
regions of space between two obstacles, where a distant
obstacle is being partially occluded by a closer obstacle (see
Fig. 3(a)). These gap occlusions can be defined as a region
of space located between a large gap in two contiguous point
cloud readings, zi and zi+1.

Each gap occlusion can be represented as a ball centered
at po = pi+pi+1

2 with radius ro = τo||pi − pi+1||, where τo
is a tunable parameter used to account for noise in sensor
data and prior knowledge about the size of obstacles.

Given sensor readings z with cardinality #z, the set of
gap occlusions G is defined as:

G = {(po, ro) | abs(zi − zi+1) > δg ∀i ∈ [1,#z]} (1)

Since occluded regions are considered traversable depend-
ing on the size of the robot, the tuning parameter, δg ,
is introduced which controls the minimum distance to be
considered a gap occlusion. Given that (1) should only detect
gaps that the vehicle could navigate through, δg should be set
at least to the width of the robot. Fig. 4 shows the effect of δg
on gap detection. Smaller gaps that the vehicle can’t navigate
through don’t generate an occlusion, while the larger gaps
do. Even though the point cloud readings all belong to the
same obstacle, the occlusions are still published since the
robot has no way to know if the perceived gaps are valid or
not until it navigates closer.

Fig. 5(a) shows a case where the vehicle is located near
a long, narrow corridor that it cannot fit through, but a gap
occlusion is still published. In Fig. 5(a), A and B represent
pi and pi+1 respectively, where zi < zi+1 and the gap
between their measurement readings is δAB > δg . To solve
this problem, a window-based approach is used to check if
the gap is traversable. More formally, we define a window
of points L+ with size κ as

L+ = {||pi+2 − pi+1||, . . . , ||pi+1+κ − pi+1||} (2)

L+ is highlighted blue from point B to C in Fig. 5(b). Given
L+, the boolean function Λ which filters gap occlusions as
either valid or invalid can be defined as follows:

Λ(L+, ξ) = IL+(d < ξ) (3)

If zi < zi+1 and there exists distance d < ξ ∈ L+, then the
occlusion is not published. Fig. 5(b) shows that some point
D in L+ is within distance ξ to pi and thus the gap occlusion
is not published. This process is mirrored in the case where
zi > zi+1 by using L− and Λ(L−, ξ).

Continuing with validation of waypoint placement, it is
desirable to prevent the planner from creating waypoints in
already explored regions. To accomplish this, the occupancy
grid map M is consulted to determine where the robot has
yet to explore. For a cell mi ∈ M, it can fall into one of
three classes depending on its value: 1) Open: mi < .5 ;
2) Unknown: mi = .5 , and 3) Occupied: mi > .5.

To prevent a gap occlusion g from being generated in
explored space, the occupancy grid is consulted to ensure that
the ratio of known to unknown cells around g is below some
tunable threshold ψg . Let Ag ⊂M denote the bounding box



(a) Gap occlusion (b) Shadow centroid

Fig. 3. Demonstrating the environment conditions responsible for the creation of specific waypoints in the proposed approach. Fig. 3(a) demonstrates a
large discontinuity in point cloud data responsible for creating a gap occlusion. Fig. 3(b) shows an obstacle casting a shadow from the range sensor, which
generates a shadow occlusion behind the obstacle.

Fig. 4. Example of point cloud distance samples becoming sparse as the
distance from the vehicle increases. A distance threshold prevents these
occlusions from being published.

(a) (b)
Fig. 5. Leveraging a filtering window prevents the placement of erroneous
gap occlusions. Fig. 5(a) shows a gap occlusion incorrectly being placed in
a narrow corridor. Fig 5(b) shows that no gap occlusion is placed in the
corridor when a distance-based filter (highlighted in blue) is applied.

of g, then the occlusion is valid only if the ratio of known
cells in Ag to the area |Ag| is below ψg . That is,

1

|Ag|

 ∑
mi∈Ag,mi<.5

(1−mi)

 < ψg (4)

B. Shadow Occlusion Detection
The second type of waypoint we consider in the path

planner is the shadow occlusion, which is defined as the
centroid of the region of space behind an obstacle in the
environment (see Fig. 3(b)).

The shadow occlusion’s formulation follows from the
definition of an obstacle in the environment. Given zi, zi+1

and the tunable parameter α, the obstacle Ω is defined as

Ω = {pi | abs(zi − zi+1) < α} (5)

In other words, an obstacle Ω is defined as a collection
of points pi that are no further than distance α from their
adjacent points. If the points are too far apart, then they may
belong to separate obstacles and thus a gap occlusion should
be considered.

The planner keeps track of a set of these obstacles so
long as they meet a size criterion. An obstacle Ω with two

points does not produce an occluded region large enough
to significantly obscure the point cloud sensor. Thus, a
parameter β is introduced defining the minimum cardinality
Ω. The obstacle set, then, is defined as

O = {Ω | #Ω > β} (6)

From O, the shadow occlusions are defined as the centroids
of the occluded regions behind these obstacles. More for-
mally, let ρ be a tunable parameter for how far behind an
obstacle a centroid can be, then given the robot position pu,
the coordinates for the shadow centroid f(Ω,pu) of obstacle
Ω are defined as:

f(Ω,pu) =
1

2(#Ω)

∑
p∈Ω

p+ (p− pu) ∗ ρ

 (7)

Just as in the case with gap occlusions, it is possible for
shadow occlusions to be detected in regions which have
already been explored. To prevent such a centroid c =
f(Ω,pu) from being considered as a waypoint, we define
Ar ⊂M as the bounding box of the robot centered at c and
ψc as a tunable threshold parameter. Equation (4) is used
where Ar is used in place of Ag and ψc in place of ψc.

C = {f(Ω) | Ω ∈ O} (8)

C. Frontier Detection
The last type of waypoint generated by the planner is the

frontier, which is used to encourage the robot to explore open
regions of the map.

In the occupancy grid M, any open cell adjacent to
an unknown cell is denoted as a frontier cell, and all
adjacent frontier cells are then grouped together into frontier
regions [5]. There are a number of approaches to determine
these frontier regions, but the algorithm we use, wavefront
detection, utilizes a double breadth first search on only newly
mapped regions in M [20].

D. Occlusion Manager
At every time step the planner is generating new waypoints

from the sensor readings z and the occupancy gridM. These
are sent to the occlusion manager, which decides when to add
new waypoints and remove old ones.

Let a waypoint be defined as wi = (xi, yi),W denote the
set of waypoints already present in the waypoint manager,
and Wt denote all waypoints detected at the current time
step t. The first criterion the manager checks is to see if the
vehicle has reached any waypoint inW and removes it if so.



The second criterion deals with safety and is considered
for both old and new waypoints. If any waypoint w ∈ W ∪
Wt is within a minimum distance threshold δs to an obstacle,
it is discarded as a valid waypoint

The last criterion dictates that, if a new occlusion wn ∈
Wt is created within distance δd to any old occlusions
wo ∈ W , the old occlusions are removed. More formally,
the update to W is as follows

W ← {wo | ||wn −wo|| > δd ∀wo ∈ W} (9)

Once all criteria have been checked for the current timestep,
the final set of waypoints W ∪Wt is generated.

E. Goal Selection

Provided with the waypoints in the occlusion manager, at
each time step the planner generates a cost for each waypoint
w based on the vehicle’s position pu and heading θ

Γ(w) = τD ∗ ||pu−pw||+ τH ∗ abs(θ−ϕ(pu−pw)) (10)

where ϕ(·) is a function which gives the angle γ ∈ [−π, π]
from the origin of a passed in vector. Together with the tuning
parameter τD, the distance term penalizes the waypoints
which may be far away from the robot, therefore encouraging
local exploration of a region before navigating elsewhere.
Due to the distance between waypoints constantly changing
as the robot navigates, it becomes possible for a different
waypoint to be selected as the new goal at every time step,
causing sporadic navigation. To mitigate this, the heading
term, defined as the angle between the robot heading and
a straight line connecting the robot and waypoint, was
introduced along with its tuning parameter τH . This term
provides incentive for the planner to select waypoints that
minimize the need to turn.

Once navigation to all waypoints is complete, our ap-
proach will have left breadcrumbs which can be leveraged
for future missions. The next section discusses the proposed
breadcrumbing process in detail.

V. BREADCRUMBING

In this section, we describe our framework for generating
watchman tours at runtime during an exploration mission.
Our proposed approach has three steps: 1) breadcrumbing,
2) max coverage optimization, and 3) tour generation. In the
first step, the robot saves its position and sensor readings
periodically during navigation as a breadcrumb. As these
breadcrumbs are stored, a maximum coverage solver is run
to find the approximately smallest set of breadcrumbs that
cover the observed environment. Once the coverage set has
been generated, an approximate traveling salesman algorithm
is run to get a shortest-path order to visit the points.

A. Dropping Breadrumbs

A breadcrumb bt is defined as a tuple of the robot’s pose
and the corresponding sensor readings at time t, as shown
in Fig. 6. At each time step, the approach saves bt into a
breadcrumb set B if it satisfies two conditions. The first is
a safety measure, where breadcrumbs are only recorded if
they are farther than some minimum safe distance δo from
an obstacle

CA1: zi > δo ∀i ∈ [1,#z] (11)

The second condition prevents B from being flooded while
the robot is navigating in a small region of space. Formally,
breadcrumb bt with position pt must be a minimum distance,
δb, from all recorded breadcrumbs bi ∈ B,

CA2: ||pi − pt|| < δb ∀bi ∈ B (12)

If the new breadcrumb bt is within δb of a crumb bi, then
the one with highest sensor coverage is kept.

Given both conditions are satisfied, the breadcrumb bt is
ready to be added to B after a sensor reduction stage. Since
the number of samples in z is large, recording it for every
breadcrumb has high memory cost. Thus, the approach treats
z as a visibility polygon P = poly(z). P is sent through a
point reduction algorithm described in [21] to generate an
estimate P̂ with less samples, thus saving memory space
at the cost of reducing measurement fidelity. The final
breadcrumb bt = (pu, P̂) is saved to B. In order to keep

Fig. 6. Example of a breadcrumb. The pose is shown as a red arrow and
the reduced sensor visibility is shown in yellow.

from running out of memory during large scale explorations,
we limit the size of B to some maximum value N . To decide
which breadcrumbs are removed when at capacity, we treat B
as a cache with temporal locality. Deletion occurs at the end
of B, and any breadcrumb that was chosen for the optimal
coverage set, B∗t , is moved to the front of B. The assumption
driving this decision is that a breadcrumb frequently used in
B∗t offers high area coverage or visibility into a secluded
region and thus should be favored. In the following section,
we discuss how B∗t is found.

B. Finding Approximately Optimal Breadcrumbs
Since B contains all breadcrumbs recorded by the robot,

the total explored region Me can be defined as the union of
polygons P̂ of all breadcrumbs in B

Me =
⋃

(pi,P̂i)∈B

P̂i (13)

Whenever a new breadcrumb is recorded, the approach
recomputes the approximately minimal cardinality set of
breadcrumbs B∗t ⊆ B such that∣∣∣∣∣∣

⋃
(pi,P̂i)∈B∗

t

P̂i

∣∣∣∣∣∣ = ζ|Me| (14)

That is, the area covered by B∗t should be equal to a per-
centage ζ of the total explored area |Me|. We use ζ because,
due to the complexity of environments, it may be that every
breadcrumb in B is required to achieve full coverage, but



only a fraction are required to reach an acceptable coverage
percentage.

In order to solve this problem, we leverage the fact that
finding B∗t is a maximum coverage problem where area
coverage is to be maximized and the candidate sets are
the visibility polygons P̂ of each breadcrumb. Given that
max coverage is an intractable problem, we use an approx-
imate greedy algorithm which leverages the submodular,
monotonic properties of area coverage. Doing so provides a
solution where |B∗t | is no larger than e

e−1 times the optimal,
where e is the Euler’s number [22].

The greedy algorithm works by starting with B∗t = ∅ and
adding the breadcrumb bi ∈ B which generates the highest
increase in coverage of B∗t as computed in (14). Once |B∗t | >
ζ ∗ |Me|, the algorithm terminates and a tour of the crumbs
in B∗t is ready to be generated.

C. Watchman Tour Generation
Provided with B∗t , the objective is to generate a tour

through these breadcrumbs such that the robot achieves full
coverage faster than during exploration. To accomplish this,
1) we cast the tour as a solution to a traveling salesman
problem to determine the visiting order of breadcrumbs and
2) perform a route simplification to remove unnecessary
points along the path

Since traveling salesman is an intractable problem, an
approximation algorithm called two-opt [23] is used to
compute the shortest route R which has path length no
longer than

√
2 times the optimal. Once R is found, it is

reduced by removing breadcrumbs deemed redundant. The
reduction works by removing breadcrumbs that the robot will
reach by navigating to other breadcrumbs. Let bi−1 and bi+1

denote the breadcrumbs before and after bi inR respectively.
There are three conditions that must be satisfied in order for
bi = (pi, P̂i) to be considered redundant. The first criterion
checks if bi−1, bi, and bi+1 form roughly a straight line,
meaning that the robot will pass close to bi while navigating
from bi−1 to bi+1. This is formulated as

CC1: π − arccos

(
u · v
||u|| ||v||

)
< η1 (15)

where u = pi − pi−1, v = pi − pi+1 and η1 is a tunable
threshold for the angle between u and v.

Next, given the heading θi of bi, the second criterion
checks if the robot will likely achieve that heading while
navigating from pi−1 to pi+1. That is,

CC2: θi − arctan

(
w2

w1

)
< η2 (16)

where w = pi+1 − pi−1 and η2 a threshold parameter. This
constraint can be ignored if the vehicle has a 360◦ point
cloud sensor, since the orientation of the breadcrumb no
longer effects the sensor measurements.

The last condition is that the line l from pi−1 to pi+1

should not intersect any obstacles in M. More formally, let
M∩ l denote all occupancy map cells mi ∈ M along line
l, the criterion is

CC3: mi < .5 ∀mi ∈M∩ l (17)

Given that all three conditions are true, the breadcrumb bi is
redundant and thus removed as a waypoint from the path. The

process is repeated until no three consecutive breadcrumbs
satisfy all three conditions, giving the final order to navigate
through each breadcrumb.

The overall runtime for this breadcrumbing depends on
both the number of breadcrumbs Nb in B and the number
of samples Ns in the point cloud data z. The bottleneck
of this process is the unary union of visibility polygons.
For worst case analysis, assume that each visibility polygon
could not be reduced, meaning P̂ has Ns vertices. Also
assume that all Nb breadcrumbs were required to coverMe.
The union is performed on the order of N2

b times and each
union takes O(Ns logNs) time, giving a final runtime of
O(N2

bNs logNs). Since a theoretical upper bound is still
unknown for two-opt, the tour generation is omitted from
this runtime discussion.

VI. SIMULATIONS

Our approach was evaluated in simulation using three case
studies: 1) a warehouse, 2) a large cluttered environment, and
3) a bookstore. All simulated experiments were performed
in Gazebo using Ubuntu 16.04 and ROS Kinetic. The UGV
testbed used in simulation is the Clearpath Jackal equipped
with a 270◦ lidar with maximum range of 30m. For path
planning, the move base1 navigation stack was used along
with GMapping2 for SLAM. A maximum speed of 2 m/s
and acceleration of 5 m/s2 were set for the planner param-
eters. In all simulations, the watchman tour coverage was
set to 99% and each breadcrumb could only use a truncated
lidar scan with max range of 5m. This was done because
the map update was only performed in a 5m radius around
the UGV. Finally, simulations were only terminated when
no reachable waypoints are left. In the case of breadcrumb
based navigation, the simulations were terminated once the
UGV had navigated through all breadcrumbs in the tour.

A. Warehouse Case Study

Several simulations were performed in the Warehouse
environment depicted in Fig. 7, where our approach was
compared with a frontier-only exploration algorithm. From
Table I, it can be observed that our occlusion-based frame-
work can explore the environment significantly faster than
the frontier-only approach over 3 runs. Furthermore, when
navigating through the space utilizing breadcrumbs collected
during initial exploration, we observe an additional reduction
in distance traveled with no drop in exploration speed, giving
large improvements to exploration time. In Fig. 8, it can be
seen that our approach achieves a faster rate of exploration
on average at all points of time when compared with frontier-
only exploration.

TABLE I. WAREHOUSE EXPLORATION RESULTS

Approach avg. speed
(m/s)

avg. distance
(m)

avg. time
(s)

frontiers 0.4 108.45 235.3
occlusions (ours) 0.45 83.37 171.3

breadcrumbs (ours) 0.45 64.46 140.0

1see http://wiki.ros.org/move base
2see http://wiki.ros.org/gmapping



Fig. 7. Warehouse environment (left) and associated map with watchman
tour (right).

Fig. 8. Warehouse environment explored area over time.

B. Cluttered Environment Case Study
In order to evaluate our framework in a realistic outdoor

environment, we created a 25m x 25m cluttered environment
with cube and cylindrical obstacles (Fig. 9). The environment
is meant to be a rough model of a dense forest, where each
obstacle is akin to tree trunks and large rocks. As seen by
Table II, our approach is further demonstrated to outperform
the frontier-based approach, and performance is further im-
proved when utilizing breadcrumbs in a second exploration
mission to cover 99% of the environment. Fig. 10(a) shows
the area covered over time when following the generated
watchman tour. As can be seen, it only took 358 seconds
to navigate through all breadcrumbs and achieve the desired
coverage, which is much faster than both frameworks during
initial exploration. Furthermore, Fig. 10(b) shows the area
covered as a function of the number of breadcrumbs. As ex-
pected, coverage increases with the number of breadcrumbs.
Additionally, there is a diminishing marginal increase in
area as the number of breadcrumbs increases, which shows
the submodularity of the coverage function as discussed in
Section V-B.

Fig. 9. Cluttered environment (left) and associated map with watchman
tour (right).

C. Bookstore Case Study
Simulations were also performed in a bookstore envi-

(a) (b)

Fig. 10. Area covered over time for breadcrumb navigation (left) and area
coverage vs number of breadcrumbs (right).

TABLE II. CLUTTERED ENVIRONMENT EXPLORATION RESULTS

Approach avg. speed
(m/s)

avg. distance
(m)

avg. time
(s)

frontiers 0.35 224.36 641.0
occlusions (ours) 0.42 211.79 504.3

breadcrumbs (ours) 0.35 142.35 406.7

ronment (see Fig. 11) that is smaller than the warehouse,
but more densely packed with obstacles, making it a good
case study to test our approach. Table III shows the speed,
distance, and time averaged over 3 runs for each navigation
framework. In this environment, our approach achieved a
slightly faster exploration speed while travelling less overall
distance, thus completing exploration faster than the frontier
framework. In the case of breadcrumb based navigation,
we observe even faster exploration speeds while drastically
reducing overall distance travelled when compared with both
initial exploration missions.

Fig. 11. Library environment (left) and associated map with watchman
tour (right).

TABLE III. BOOKSTORE EXPLORATION RESULTS

Approach avg. speed
(m/s)

avg. distance
(m)

avg. time
(s)

frontiers 0.29 99.11 277.0
occlusions (ours) 0.30 84.99 222.0

breadcrumbs (ours) 0.32 62.83 152.0

VII. EXPERIMENTS

Experimental validations were performed on a nearly
identical test bed, with the exception that we use a Velodyne
VLP16 lidar with 360◦ FOV and maximum range of 100m
for sensing. We tested the approach inside the basement of
a building and inside an office space. The resulting maps
and corresponding watchman tours for both the basement
and office experiments are shown in Fig. 12 and Fig. 13
respectively and the area covered over time is also shown
for both in Fig. 14.

Note: Videos for these simulations and experiments are
available in the provided supplemental material. More sim-
ulations and experiments are also available in the following



link: https://www.bezzorobotics.com/nm-iros22.
The code for the proposed framework is available at
https://github.com/UVA-BezzoRobotics-AMRLab/
OcclusionBasedFrontierNavigation

(a) (b)

Fig. 12. Basement setup (a) and associated map with watchman tour (b).

(a) (b)

Fig. 13. Office setup (a) and associated watchman tour (b).

(a) (b)

Fig. 14. Basement area vs time (a) and office area vs time (b)

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a novel exploration strat-
egy that uses both frontier-based and occlusion-based frame-
works that can also record important information in the form
of breadcrumbs for use in future missions. Our approach
demonstrates improvements upon frontier-only planners in
terms of exploration speed and distance traveled as shown
in the simulation studies. Furthermore, through experiments
we show that our approach can also be used in the real world
on-board a UGV.

From here, future work includes adding an entropy-based
waypoint selection process to help improve exploration
speeds. Furthermore, we would also like to utilize sparse
raycasting at points sampled along the watchman tours to
give better breadcrumb coverage approximations and further
reduce the distance the robot must travel to reach desired
coverage thresholds.
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