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Abstract— Current motion planning approaches for au-
tonomous mobile robots often assume that the low level con-
troller of the system is able to track the planned motion with
very high accuracy. In practice, however, tracking error can be
affected by many factors, and could lead to potential collisions
when the robot must traverse a cluttered environment. To
address this problem, this paper proposes a novel receding-
horizon motion planning approach based on Model Predictive
Path Integral (MPPI) control theory – a flexible sampling-based
control technique that requires minimal assumptions on vehicle
dynamics and cost functions. This flexibility is leveraged to
propose a motion planning framework that also considers a
data-informed risk function. Using the MPPI algorithm as a
motion planner also reduces the number of samples required
by the algorithm, relaxing the hardware requirements for
implementation. The proposed approach is validated through
trajectory generation for a quadrotor unmanned aerial vehicle
(UAV), where fast motion increases trajectory tracking error
and can lead to collisions with nearby obstacles. Simulations
and hardware experiments demonstrate that the MPPI motion
planner proactively adapts to the obstacles that the UAV
must negotiate, slowing down when near obstacles and moving
quickly when away from obstacles, resulting in a complete
reduction of collisions while still producing lively motion.

I. INTRODUCTION

The interest in autonomous mobile robots (AMR) is fast
growing in the private. military, and commercial sectors
for its promise to revolutionize key components of many
industries, such as logistics, structural inspection and trans-
portation. For these applications, robust autonomy is the key
that enables such operations to rapidly scale while keeping
human intervention to a minimum, allowing such endeavors
to remain affordable. The robots that are deployed in these
real-world situations, however, are subject to many sources of
uncertainty that introduce risks while in motion, e.g. dynamic
obstacle position and disturbances. To compensate for this
uncertainty, many approaches are receding-horizon in nature,
so that newly-obtained information may affect the resulting
trajectory. In particular, receding-horizon motion planning
has recently grown into a large field of study within the
robotics community.

Typical receding-horizon approaches decouple motion
planning and trajectory tracking, and are often treated as
separate problems [1]. Such decoupling could lead to po-
tentially dangerous situations if the motion planner is not
aware of the limits and capabilities of the lower-level planner.
Consider the scenario depicted in Fig. 1 in which an aerial
robot must pass through a narrow opening to the other side.
A receding-horizon motion planner may command a fast-
moving trajectory to reduce travel time, but such a trajectory
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Fig. 1. Motivating example in which a slower speed results in safer motion
through a small gap.

may not be perfectly tracked by the low level controller. This
could induce a large tracking error, meaning that tracking
a collision-free trajectory may not result in collision-free
motion. In order to mitigate the risk of collision under this
kind of uncertainty, the robot must command slower motion
through the gap, reducing the tracking error.

One possible solution is a data-informed approach, where
the tracking error and subsequent risk of collision are inferred
from past performance of the robot. This data-informed risk
assessment allows the risk measure to accurately reflect the
performance of the low level controller, but must capture
a potentially complex relationship between the commanded
trajectory and the risk of tracking that trajectory. Gradient-
based and quadratic-programming-based approaches are re-
strictive in that risk-based costs must have certain numerical
qualities for real-time use. Alternatively, sampling-based ap-
proaches consider costs with minimal assumptions, allowing
a greater flexibility and generality when defining risk. For
this reason, the heart of the proposed approach in this paper
is a receding-horizon Model Predictive Path Integral (MPPI)
motion planner, adapted from the sampling-based MPPI con-
trol used in information theoretic control theory [2]. Typical
MPPI works by rapidly sampling the low level control space
of the system around a “best guess” of the optimal open-loop
control policy, and a weighted sum is performed to iteratively
update this best guess, converging to the optimal control
policy after many iterations. One consequence of sampling
within the low level control is the need for a large number of
samples at a high rate (typically on the order of 50-100 Hz).
For real-time use, this requires the robot to have a GPU on
board to speed up the sampling time.

Our approach adopts MPPI control to a trajectory planning
setting; instead of sampling within the control space, we
sample within a trajectory parameter space. In particular, the
proposed MPPI trajectory planner determines waypoints that
define a spline-based trajectory. This reduces the sampling



space dimension, allowing our MPPI path planner to run
on a CPU in real-time, hence for a more relaxed set of
system requirements. Overall, our approach allows for a
computationally more efficient method to sample trajectories
within the MPPI framework, without sacrificing the ability
to generate fast and safe trajectories.

This paper presents two main contributions. First, the
MPPI control approach is cast as a parameterized high
level planner, reducing the dimension of the optimization
space and mitigating the hardware requirements needed to
find reasonable solutions to the motion planning problem.
Second, a data-informed risk measurement is included inside
the cost function of the MPPI motion planner, using the
actual trajectory tracking performance of the system to
determine safe and lively trajectories. The result is motion
that minimizes risk of collision due to trajectory tracking
error while avoiding obstacles and moving towards a goal.
Together, the overall approach provides a practical method
for run-time risk-aware trajectory generation towards safe
navigation. While this approach is flexible enough to be
applied in a general motion planning setting, this paper
focuses on motion planning for an unmanned aerial vehicle
(UAV) since these types of systems can be greatly affected
by tracking error, and such tracking error can induce risk of
collision, especially when navigating cluttered environments.

The rest of the paper is organized as follows: in Sec. II we
provide an overview of the current state of the art in receding-
horizion motion planning, risk-aware motion planning and
sampling-based motion planning. In Sec. III we formally
define the problem of fast and safe trajectory generation
under the risk of collision due to trajectory tracking error.
Sec. IV describes the components of the proposed approach
which is validated with simulations in Sec. V and physical
experiments in Sec. VI. Finally, we draw conclusions and
discuss future work in Sec. VII.

II. RELATED WORK

Motion planning remains an active field of research within
the robotics community. For agile robotic systems such as
quadrotors, most research effort is focused on leveraging this
agility by creating fast, aggressive maneuvers [3]. Cutting-
edge agile motion planning often uses gradient-based op-
timization [4], mixed-intenger quadratic programming [1],
sample- and search-based methods [5], or some mixture of
these techniques [6]. One assumption implicit within these
approaches is the ability of a low level controller to accu-
rately track the aggressive trajectories. Many factors, how-
ever, can contribute to a gap between the generated trajectory
and the actual trajectory. For example, despite the existence
of sophisticated nonlinear controller techniques [7], linear
PID low level controllers offer sub-optimal performance but
remain ubiquitous in many real-world applications for low
level tracking due to speed and ease of implementation [8].
Aerodynamic effects [9], [10] and errors within the visual
odometry pipeline [11], [12] are additional factors that can
degrade trajectory tracking, which in turn introduces a risk
of collision.

One possible approach is to use data-driven models to
compensate for this uncertainty, such as end-to-end neural
network policies [13], self-adjusting system models [14], or
disturbance estimation and rejection [15]. More analytical

approaches seek to provide rigorous safety guarantees, such
as Tube-MPC [16], [17], chance-constrained optimization
techniques [18], or risk-constrained motion planning ap-
proaches [19]. In these cases, simplifying assumptions are
usually placed on the risk involved, or the policy is too
computationally intensive for real-time control.

Sampling-based techniques, such as RRT-based tech-
niques [20] and motion primitive sampling [21], [22], offer
approximate solutions to otherwise intractable problems,
especially when solutions are required in real time. One par-
ticular sampling-based technique named STOMP [23] com-
putes trajectories for robotic arm manipulators by stochastic-
approximated gradient descent. Such a technique allows
motion planning with non-differentiable costs, but is not
receding-horizon and requires knowledge of the entire con-
figuration space to perform well, making it not suitable
for AMR applications. This work eventually evolved into
model predictive path integral (MPPI) control [2], [24], [25],
which directly samples within the low level control space of
the robot and is theoretically motivated with information-
theoretic control techniques. In order to achieve aggressive
maneuvers, MPPI control requires approximately 10,000
samples to be taken at a rate of 40 Hz, necessitating the
use of a GPU to parallelize and speed up the computation.

Our approach leverages the ability of the MPPI control
technique to optimize non-differentiable or complex costs
to incorporate data-informed risk within the cost function.
Specifically, we examine the risk of collision due to tracking
error of a low level controller when aggressive, high-speed
trajectories are planned by the MPPI path planner. In order
to generalize this procedure and mitigate the number of
samples required per MPPI iteration, these trajectories are
parameterized over carefully-chosen polynomials, allowing
the MPPI procedure to be performed in real-time on a CPU.
To the best of our knowledge, our work is the first to
utilize MPPI techniques to generate trajectories in a receding
horizon fashion while optimizing for a risk cost that does not
need to be differentiable.

III. PROBLEM FORMULATION

In this work, we are interested in creating a receding-
horizon trajectory generation policy that addresses the risk
of collision due to tracking error between the commanded
trajectory and the actual trajectory of a UAV, especially when
navigating potentially cluttered environments. Additionally,
this trajectory generation policy should be able to handle
data-informed functions of risk, and consider potentially
complex relationships by placing minimal assumptions on
the properties such functions may have (e.g. smoothness,
differentiability). We separate this problem into two parts:
(i) creation of a receding-horizon trajectory generator that
can optimize for a general cost function at run time, and
(ii) the inclusion of a risk factor that, when minimized,
commands safe and lively trajectories in the presence of low
level tracking error.

Problem 1: Receding Horizon Trajectory Generation:
We seek a policy Pτ (x(t0)) that takes in the current state of
the robot x(t0) ∈ Rnx and at run time returns a time-based
trajectory τ(t) defined over a future horizon t ∈ [t0, t0+ tH ]
for a low level controller to track. This trajectory should



move the robot closer to a goal state xg ∈ Rnx , as well as
avoid the state set XO ∈ Rnx occupied by obstacles:

|x(t0 + tH)− xg| ≤ |x(t0)− xg|
x(t) /∈ XO, ∀t′ ∈ [t0, t0 + tH ]

(1)

In addition to these requirements, this policy should optimize
over a cost function S(τ) that may be nonlinear, non-smooth
and even non-differentiable:

Pτ = argmin
τ

[S(τ)] (2)

Note that the commanded trajectory τ(t) may not be the
same as the actual trajectory τact of the system over time,
due to tracking error. To compensate for this, the proposed
approach also considers a risk measure ρ(·) ∈ R that relates
a given trajectory τ(t) to the risk of collision due to this error
|τ(t)− τact(t)|. Although we do not constrain ρ to have any
particular form, basic assumptions must be placed in order
to cast the problem of risk minimization correctly: (i) ρ(·) is
positive semi-definite, (ii) ρ(·) = 0 for situations that have
no risk, and (iii) ρ(·) > 0 for situations that have risk of
collision. With these assumptions, this risk can be included
inside the cost function of the trajectory generation policy.

Problem 2: Risk-aware Navigation: Given a risk measure
ρ(·), create a policy Pτ for finding a trajectory τ that also
minimizes risk:

Pτ = argmin
τ

[
S(τ) +

∫
τ

ρ(·)dt
]

(3)

Next, we discuss our proposed approach for safe, risk-aware
navigation of a UAV by combining risk measures with a
novel MPPI-based motion planning technique.

IV. APPROACH

We propose an MPPI-based motion planning policy that
finds a trajectory τ(t) for the robot to track, which is chosen
by the policy for its ability to guide the robot toward the
goal state xg , while also minimizing the risk measure ρ(·).
We consider trajectories defined by parameters R so that
the task of the MPPI planner is to find a set of parameters
R∗ that optimize a control objective function over a future
time horizon. The motion planner is sampled in a receding
horizon fashion, allowing the robot to react to a potentially
changing environment. Fig. 2 shows our approach within a
typical autonomy stack, in which τ(t, R) is then fed to a low
level controller that produces controls u for reliable tracking.

Fig. 2. Diagram showing the proposed motion planner (blue shaded cell)
within the context of a general autonomy stack.

To facilitate discussion of the proposed motion planner,
the scenario assumed by this paper involves a UAV traveling
through a potentially cluttered obstacle course. As is typical
of the control pipelines for many AMR, there is some
mismatch between the commanded trajectory τ(t) and the
actual trajectory τact, leading to some tracking error in the

state space of the UAV. When the UAV is traveling in a
cluttered environment, this mismatch could lead to collision
with an obstacle. Thus, the MPPI motion planner should
be aware of this risk and command trajectories that move
towards the goal while remaining safe.

To this end, Sec. IV-A discusses the parameters R that
fully define a trajectory τ . Sec. IV-B then discusses how
ρ(·) can be concretely defined. Sec. IV-C discusses how an
MPPI can utilize a general risk measure ρ(·) for fast, online
and risk-aware motion planning. Finally, Sec. IV-D discusses
safety considerations under failure of the receding-horizon
MPPI-based motion planner.

A. Trajectory Parametrization

The underlying MPPI motion planning algorithm relies
on sampling different perturbations E to the parameters R,
resulting in different trajectories defined by τ(t, R + E).
These trajectories are continuously recomputed over some
future horizon and applied in a receding-horizon fashion. In
order to minimize the number of random samples needed for
best results, the dimension of the sampling space E should
also be relatively small. This paper assumes τ takes the form
of a minimum jerk trajectory, since it is a popular choice for
UAV trajectory generation [3], [26]. These minimum jerk
trajectories are defined by P waypoints R = {r1, r2, ..., rP },
where r ∈ R3 is the position of each waypoint, forming
P different trajectory segments. Every min-jerk trajectory
segment is defined by a fifth-order polynominal in time along
each cartesian direction i ∈ [x, y, z]:

τ i(t) =

5∑
j=0

(cij/j!)t
j (4)

Although the proposed approach may use any number of
waypoints, the rest of the paper will restrict a single trajec-
tory to be defined by P = 2 waypoints. This is done to
both simplify discussion and reduce the number of decision
variables as much as possible, mitigating the computational
burden of this approach. This means a trajectory will have
two distinct segments, where each is defined by a set of coef-
ficients {cijk}, with j ∈ [0, 5] denoting the associated power
of t and k ∈ [1, 2] denoting the trajectory segment. Fig. 3(a)
shows an example trajectory defined by two waypoints, with
each segment having an equal time span of T seconds so
that the total trajectory has a time span of th = 2T seconds,
equal to the horizon-length of the receding horizon planner.

The first trajectory segment (blue colored in Fig. 3(a)) is
defined by the initial position pi0, velocity vi0 and acceleration
ai0 of the UAV, as well as the position of the first waypoint
ri1:

pi0 = ci01

vi0 = ci11

ai0 = ci21

ri1 =

5∑
j=0

(cij1/j!)T
j

(5)

Likewise, the second trajectory segment (shown in orange in
Fig. 3(a)) is defined by the first waypoint position ri1, the
second waypoint position ri2, as well as the desired velocity



vie and acceleration aie at the end of the total trajectory, as
the UAV reaches the second waypoint.

ri1 = ci02

ri2 =

5∑
j=0

(cij2/j!)T
j

vie =

5∑
j=1

(cij2/(j − 1)!)T j−1

aie =

5∑
j=2

(cij2/(j − 2)!)T j−2

(6)

In order to avoid defining the velocity and acceleration
conditions at the first waypoint, Pontryagin’s minimum prin-
ciple [3] may be used to allow these conditions to remain
free. It can be shown that not constraining v(t) and a(t) at
the first waypoint directly implies continuity to the associated
costate variables λv(t) and λa(t), respectively. For a given
direction i and trajectory segment k, these costates are:

λv(t) = ci4k + ci5kt (7)

λa(t) = ci3k + ci4kt+ (ci5k/2)t
2 (8)

Continuity of these costate values at the first waypoint
amounts to the following constraints:

ci41 + ci51T = ci42

ci31 + ci41T + (ci51/2)T
2 = ci32

(9)

Lastly, continuity of the velocity and acceleration at the first
waypoint must also be enforced:

5∑
j=1

(cij1/(j − 1)!)T j−1 = ci12

5∑
j=2

(cij1/(j − 2)!)T j−2 = ci22

(10)

Together, (5), (6), (9) and (10) form 12 linear equations
of 12 unknown constants, which may be solved efficiently
by any number of linear algebra solvers available [27].

B. Risk Measure
Many types of risk measures have been used in different

robotic applications, from defining ρ(·) as the probability of
a fault for legged motion [28], to conditional value at risk
[19], a more sophisticated measure of risk that accounts for
the severity of unlikely but possible events.

This paper proposes a data-informed risk measure that
models geometric mismatch between the trajectory τ(t, R)
tracked by the low level controller and the actual motion
of the UAV, τact. Specifically, a relationship is established
between this mismatch and the maximum speed commanded
by τ(t, R). This relationship captures how higher robot
speeds often worsen tracking error of a desired trajectory
by the low level controller. This degradation in performance
can lead to unsafe situations, especially when the robot is
travelling in a cluttered environment. Thus, the risk measure
ρ(τ(t, R)) relates the speed of the commanded trajectory to
the risk of collision with nearby obstacles.

In order to define this risk measure, first define d(t1, t2)
as the euclidean distance between a point τ1(t1) on one tra-
jectory and point τ2(t2) on another. The Hausdorff distance
dH(·) between two trajectories τ1 and τ2 is defined as:

dH(τ1, τ2) = max

{
max

t1∈[0,PT ]

[
min

t2∈[0,PT ]
d(t1, t2)

]
,

max
t2∈[0,PT ]

[
min

t1∈[0,PT ]
d(t2, t1)

]}
(11)

Fig. 3(b) shows an example of how dH(·) is found be-
tween the commanded trajectory τ(t, R) and the actual
trajectory τact that results from trying to track τ(t, R). If
dH(τ(t, R), τact) ≈ 0, then both trajectories have consider-
able overlap in the xyz space over the entire trajectory, while
dH(τ(t, R), τact) ≫ 0 signifies at least some portion where
there is significant deviation. Through simulation or experi-
ment, data can be collected that measures dH(τ(t, R), τact)
for various commanded trajectories. This data can then be
used to train an estimate d̂H (τ(t, R)) that is only dependent
on the commanded trajectory. For the specific UAV applica-
tion considered in this paper we have observed - as intuitively
expected - that the deviation is a function of the maximum
speed vmax commanded by τ(t, R). In this way it is possible
to predict the tracking error using only information from the
commanded trajectory.

(a) (b)
Fig. 3. Example of min-jerk trajectory shown in (a), and example of
trajectory tracking error shown in (b).

Denote dobs as the distance between τ(t, R) and the nearest
obstacle. For the UAV, it is considered risky when dobs <
d̂H , since the deviation of the actual trajectory may extend
toward the obstacle, potentially colliding with it. Likewise, if
dobs ≥ d̂H , then there is no risk of collision, since the robot
is expected to deviate from τ(t, R) by a distance smaller
than the nearest obstacle.

To this end, the risk measure is defined as:

ρ(τ(t, R)) = max

[
0,

d̂H
dobs

− 1

]
(12)

In this way, ρ(·) > 0 when there exists the potential for τact
to intersect with the boundary of an obstacle, and ρ(·) = 0
when dobs ≥ d̂H .

C. MPPI For Motion Planning

MPPI control is a sampling-based control method to find
the solution to a stochastic optimal control problem (OCP).
In the proposed approach, the MPPI solver is used to find
a series of Cartesian waypoint positions R = {r1, r2} that
define a min-jerk trajectory τ(t, R).



The MPPI algorithm must be defined with respect to some
stochasic equations of motion for the state x:

xk+1 = f(xk, τ(tk, R+ E)) (13)

Here, f(·) represents a discrete-time equation of motion in
which the robot x evolves under the influence of a trajectory
τ(t, R + E), where E = {ϵ1, ϵ2} are random perturbations
on the Cartesian xy position of the pth waypoint, with ϵp ∼
N (0,Σ).

The stochastic optimal control problem may be defined as
the minimization of an expectation value, denoted by E(·):

R∗ = argmin
R

EQ [S(R+ E)] (14)

The term S(·) defines the cost of the total trajectory,
with waypoints R being perturbed by stochastic variables
E that create the probability distribution Q. Sec. IV-C.1
describes the components of this cost function, and Sec. IV-
C.2 describes the MPPI algorithm for finding the solution
to (14).

1) Cost Function Components
The total cost S(·) is defined over P = 2 waypoints as:

S(R+ E) = ϕ(x(PT )) +

∫ PT

0

C(x(t))dt (15)

The term ϕ(·) is a terminal cost function defined as the error
between the final state x(PT ) and the goal state:

ϕ(x(PT )) = wg|x(PT )− xg| (16)

The constant wg > 0 is a scaling factor that is tuned to adjust
the relative weight of the different objectives within (15). The
running cost C(x(t)) is defined by three terms:

C(x) = Cct(x) + Cobs(x) + Cρ(x) (17)

The first term Cct penalizes any violation of state and
actuation constraints of the UAV. Because the UAV model
is differentially flat, both the state and controls may be
expressed as a function of x and its derivatives, meaning
constraint violations can easily be checked and heavily
penalized. The second term Cobs is an obstacle cost that
heavily penalizes collisions with known obstacles in the
environment. Since MPPI is a gradient-free method, the exact
form of Cobs can be quite sparse with gradient information,
such as an indicator function used with an occupancy map.
For the obstacle course assumed by this paper, the obstacle
cost is defined using an indicator function Ioj (x) that returns
1 when state x lies within obstacle oj , else it returns zero.

Cobs = wobs

no∑
j=0

∫ PT

0

Ioj (x(t))dt (18)

The second term Cρ is the portion of the cost related to the
risk of a trajectory. Since we constrain ρ(·) to be positive
semi-definite, the risk cost can be defined as proportional to
this risk measure:

Cρ = wρρ(·) (19)

As was the case with the obstacle cost, using an MPPI-based
approach to solving (14) allows the exact form of ρ(·) to
be quite flexible in its definition, since it does not require
information about the gradient of ρ(·). For example, ρ(·)

may be a function that approximates some notion of risk
that may be hard to write by hand, e.g., a learned policy
trained on simulated or experimental data.

Inclusion of the risk measure defined by (12) in the cost
function has two different effects. First, trajectories are gen-
erally planned to be spatially away from obstacles in order
to increase dobs. Second, if the robot must move through
small gaps in order to reach its goal, then trajectories that
command slower motion are preferred in order to decrease
dH . These behaviors are more concretely explored in both
simulation (Sec. V) and experiment (Sec. VI) later in the
paper.

2) Solving the Stochastic OCP
Authors in [25] show how it is possible to obtain a theoret-

ical exact solution to (14). Unfortunately it is impossible to
compute directly, but may be approximated using an iterative
sampling method. This iterative algorithm relates the (k+1)th

iteration to the kth iteration by:

Rk+1 = Rk +

N∑
i=1

w(Ei)Ei (20)

w(Ei) =
1

η
exp [−S(Rk + Ei)] (21)

Here, η is a normalization factor to ensure
∑N

i w(Ei) = 1.
Fig. 4 illustrates how this algorithm finds a trajectory around
an obstacle with P = 2 waypoints. At the kth iteration, the
current waypoint locations Rk are subjected to a series of
random perturbations {Ei}. The blue/green trajectories are
the results of these perturbations, with the color correspond-
ing to the weight of the trajectory as determined by (21).
The (k + 1)th iteration is found through a weighted sum of
these perturbations, so that τ(t, Rk+1) has a lower cost than
the previous iteration. This procedure is repeated niter times,
and the resulting waypoints Rniter are applied. In general,
niter is chosen to be as large as possible so that the iterative
procedure can reasonably converge to the optimal solution.

D. Ensuring Safety Under Failure
Lastly, it should be noted that due to the receding-horizon

nature of the approach, a given trajectory may not be entirely
traversed before another trajectory is replanned by the MPPI.
Our approach leverages this by designing each trajectory
segment shown in Fig. 3(a) with different purposes. The
first trajectory segment (blue) commands basic acceleration,
deceleration and coasting behaviors of the UAV, and the
UAV is expected to track most if not all of this trajectory
segment. However, the UAV is not expected to track the
second trajectory segment (orange) under normal operation.
Instead, the MPPI should replan a new trajectory before the
UAV reaches the first waypoint, thus ignoring the second
trajectory segment altogether. If, however, the MPPI planner
should fail, the UAV will continue to follow the second
trajectory segment. In order to ensure the safety of the UAV,
the second segment is designed so that the UAV safely stops
at the second waypoint. This is easily done by setting the
boundary velocity and acceleration of the second waypoint
to zero, or vie = aie = 0 in (6).

V. SIMULATED EXPERIMENTS

Simulations were performed to validate the ability of the
proposed approach to reduce risk and negotiate obstacles



Fig. 4. An example iteration step of the MPPI algorithm.

in a cluttered environment while navigating towards a goal.
RotorS [29] was used as a high-fidelity simulator for UAV
motion that also includes a low level trajectory nonlinear
controller [7]. Given a commanded trajectory τ(t), the low
level controller attempts to track this trajectory, but due
to measurement noise and physical limitations the actual
trajectory τact is somewhat different, leading to a non-zero
tracking error dH(τ(t), τact(t)). In order to estimate dH(·),
data were collected by commanding different trajectories
τ(t) and recording the resulting trajectory τact. Each trajec-
tory was defined by P = 2 waypoints placed in the xyz
space, with T = 2.5 seconds between each waypoints. Noise
was injected into the simulated odometry sensor as a way to
exacerbate the tracking error of the low level controller.

Fig. 5(a) shows a recorded example in which τact differs
from τ(t). Also included in this plot is dH(·) between the
two trajectories. Fig. 5(b) shows a plot of dH(·) as a function
of maximum speed vmax along τ(t). It can be seen that as
vmax increases, the set difference dH(·) also increases. A
regression line d̂H(vmax) was fit to the data to capture the
95th percentile, giving a conservative estimate of the actual
set difference, d̂H(vmax) ≈ dH(·). This estimator of the set
difference d̂H was used in (12) to find an estimate of the
risk ρ(·).

(a) (b)
Fig. 5. RotorS UAV trajectory data used for risk cost Cρ.

The MPPI algorithm that solves (14) was written
in C++, using perturbation covariance matrix Σ =
diag(0.15, 0.15, 0.0) m, N = 50 samples per iteration and
niter = 200 total iterations per MPPI sample. The MPPI
was run on a Lenovo ThinkPad X1 with Intel i7 6-core
processor, and took an average of 0.19 ± 0.03s to run. The
algorithm took the current state of the UAV x0 as well as
a set of local obstacles {oj} and returned an optimal set of
waypoints R∗ that defined a trajectory τ(t, R∗) to be tracked.
This trajectory was re-planned in a receding-horizon fashion,
with the MPPI being re-sampled at a rate of 1Hz to find an
updated set of waypoints.

To test the capabilities of the MPPI planner, the UAV
was tasked with navigating an obstacle course, shown in

Fig. 6(a,b), with both small and large gaps to negotiate. To
facilitate clockwise motion around the track, goal points were
chosen a priori and commanded sequentially as the goal state
in the MPPI cost function (16). These goal states also acted
as a warm-start for the MPPI algorithm, choosing the initial
waypoints R0 to be along these goal points.

Fig. 6 also shows the result of 20 laps around the obstacle
course. Fig. 6(a) visualizes the resulting motion of the
UAV as it tracked trajectories commanded by the MPPI.
To highlight the effect of the risk objective on the overall
motion of the UAV, Fig. 6(b) shows the resulting trajectories
with wρ = 0 in the risk cost objective (19). This effectively
removed the consideration of risk within the MPPI when
planning motion, instead finding a trajectory that avoided
obstacles while moving as quickly as possible. Qualitatively,
the difference between these trajectories is only apparent
when the UAV approaches small gaps A and B. With our
full risk-aware approach, the UAV slowed down enough to
ensure safe passage through these tight spots, whereas the
policy with no risk consideration sped through these gaps,
resulting in collisions due to tracking error. These collisions
are shown visually by the red dots in Fig. 6(b). Alternatively,
the risk-aware approach commanded the same high speed as
the risk-agnostic policy through corridor C, since there were
no close obstacles and it was safe to move quickly through
this region.

Fig. 6(c) additionally shows the distance between the UAV
and the nearest obstacle as it traveled around the track.
This distance is plotted against progress along the track,
where progress = 0 when the UAV was at the start of the
course, and progress = 1 at the end of the course. This plot
shows how the full approach worked to increase the distance
between the UAV and obstacles, whereas the MPPI without
risk consideration commanded motion closer to obstacles.
Over the 20 laps, the full approach with risk consideration
had 0 collisions, while motion with no consideration for risk
resulted in 4 collisions.

VI. PHYSICAL EXPERIMENTS

The proposed approach was verified experimentally on
a Bitcraze Crazyflie quadrotor in two case studies: (i) a
rectangular loop and (ii) a 4-way city block. A Vicon motion
capture system provided odometry information to an offboard
laptop, which then used the MPPI path planner with the
same parameters as in simulation to send trajectories to the
Crazyflie’s nonlinear controller [30]. Similar to the simu-
lated experiments, trajectory tracking data were collected
by commanding the Crazyflie to track various trajectories
and recording dH(τ(t, R), τact), which was used to train
d̂H(τ(t, R)). The effect of including the risk measure inside
the MPPI cost function is shown by comparing the full
approach to the same MPPI with wρ = 0 in (19).

A. Rectangular Loop Case Study
In this case study, the Crazyflie was tasked to complete

loops around a central rectangular obstacle while negotiating
its way through a narrow 30 cm gap between the northern
wall and a protruding square obstacle. The top portion of
Fig. 7 shows a snapshot of a sample pass through the
narrow gap, both without risk consideration and with our full
approach. For these single trajectory examples, the physical



(a) (b) (c)
Fig. 6. Simulation of quadrotor navigating an obstacle course using the MPPI motion planner.

obstacle height was raised to demonstrate a collision without
risk consideration. For the rest of data collected, the physical
obstacle height was lowered to allow multiple laps around the
environment without disruption. The results of the multiple
laps are shown in the bottom plots of Fig. 7. For this study,
20 laps were recorded for both the no risk and full approach
cases, giving 40 total laps tested. Fig. 7(a) shows how the
UAV collided with the north wall 6 times (highlighted in red)
when risk was not taken into account due to overshooting
the planned MPPI trajectories at high speeds. However, with
the full approach (Fig. 7(b)), no collisions occurred because
the UAV slowed down at the bends of the loop in order to
mitigate the overshooting behavior. Additionally, the UAV
achieved comparable speeds both without risk consideration
and with our full approach on the east, south and west side of
the central square. This demonstrates how our full approach
proactively adapted to move quickly through regions where
there were no close obstacles, and the risk of collision due
to tracking error was minimal.

(a) No risk (b) Full approach

Fig. 7. Crazyflie positions and velocities for the rectangular loop environ-
ment, along with snapshots of the physical experiment in our lab.

B. 4-Way City Block Case Study

In the second case study, the UAV was tasked to complete
a complex path that involved alternating between straight
lines and turning in different directions through a 4-way city
block-like circuit. First, the UAV passed through a narrow
20 cm horizontal channel in the center of the configuration
(Fig. 8(a)). It then executed a u-turn around the narrow
rectangular obstacle in the second quadrant (Fig. 8(b)) and

went through a 20 cm vertical passage (Fig. 8(c)) before
looping back to the start (Fig. 8(d)). Fig. 9 shows the
trajectory of the Crazyflie over 10 laps in both the no risk and
full approach cases, giving 20 laps total. As can be seen from
the results, in the no risk case (Fig. 9(a)), the UAV collided
with obstacles on 8 occasions within the narrow corridors,
while in the full approach (Fig. 9(b)) it never collided. The
speed profiles also demonstrate that, when obstacles are far
enough away, the full approach allowed the UAV to reach
the same speeds as with no risk consideration. Furthermore,
thanks to our risk-aware framework, the UAV slowed down
when traversing the cluttered sections of the environment,
allowing for safer navigation that avoided collisions.

VII. CONCLUSIONS AND FUTURE WORK

In this work we have presented a receding-horizon path
planning approach that can proactively adapt the trajectory
of a robot at run-time in order to reduce overall risk while
navigating through a cluttered environment. The proposed
approach utilizes an MPPI control algorithm in order to
accommodate a general, data-informed risk measure. Im-
portantly, the trajectory planned by the MPPI is parame-
terized by a few number of variables, greatly reducing the
computational requirements to run the MPPI algorithm and
allowing the approach to run on more general hardware.
The full approach was validated on a UAV robotic system
navigating around obstacles towards a goal, with risk defined
by the tracking error between commanded trajectory and the
actual trajectory. Both simulation and experiment demon-
strated how the inclusion of this risk measure inside the cost
function allows the robot to move more safely through the
environment, compared to motion without risk consideration.

Future work includes deploying this approach in additional
robotic contexts, such as drones flying in outdoor environ-
ments with more complex sources of risk, or ground vehicles
where risk may be associated with human-robot interaction.
Additionally, the development of more sophisticated risk
measures may facilitate more aggressive motion through
cluttered environments, allowing the overall trajectory to be
less conservative while ensuring risk is minimized.
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(a) (b) (c) (d)
Fig. 8. A demonstration of a single lap that the UAV performs around the 4-way city block environment, along with its velocity profile.

(a) No risk (b) Full approach

Fig. 9. Crazyflie positions and velocities for the 4-way city block
environment (a) without considering risk and (b) with the full approach.
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